On refactorization problems and rational Lax matrices of quadrirational Yang–Baxter maps

Q1 Mathematics
Pavlos Kassotakis , Theodoros E. Kouloukas , Maciej Nieszporski
{"title":"On refactorization problems and rational Lax matrices of quadrirational Yang–Baxter maps","authors":"Pavlos Kassotakis ,&nbsp;Theodoros E. Kouloukas ,&nbsp;Maciej Nieszporski","doi":"10.1016/j.padiff.2025.101094","DOIUrl":null,"url":null,"abstract":"<div><div>We present rational Lax representations for one-component parametric quadrirational Yang–Baxter maps in both the abelian and non-abelian settings. We show that from the Lax matrices of a general class of non-abelian involutive Yang–Baxter maps (<span><math><mi>K</mi></math></span>-list), by considering the symmetries of the <span><math><mi>K</mi></math></span>-list maps, we obtain compatible refactorization problems with rational Lax matrices for other classes of non-abelian involutive Yang–Baxter maps (<span><math><mi>Λ</mi></math></span>, <span><math><mi>H</mi></math></span> and <span><math><mi>F</mi></math></span> lists). In the abelian setting, this procedure generates rational Lax representations for the abelian Yang–Baxter maps of the <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span> lists. Additionally, we provide examples of non-involutive (abelian and non-abelian) multi-parametric Yang–Baxter maps, along with their Lax representations, which lie outside the preceding lists.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"13 ","pages":"Article 101094"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We present rational Lax representations for one-component parametric quadrirational Yang–Baxter maps in both the abelian and non-abelian settings. We show that from the Lax matrices of a general class of non-abelian involutive Yang–Baxter maps (K-list), by considering the symmetries of the K-list maps, we obtain compatible refactorization problems with rational Lax matrices for other classes of non-abelian involutive Yang–Baxter maps (Λ, H and F lists). In the abelian setting, this procedure generates rational Lax representations for the abelian Yang–Baxter maps of the F and H lists. Additionally, we provide examples of non-involutive (abelian and non-abelian) multi-parametric Yang–Baxter maps, along with their Lax representations, which lie outside the preceding lists.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信