Codimension growth of algebras with superautomorphism

IF 0.7 2区 数学 Q2 MATHEMATICS
Antonio Ioppolo , Daniela La Mattina
{"title":"Codimension growth of algebras with superautomorphism","authors":"Antonio Ioppolo ,&nbsp;Daniela La Mattina","doi":"10.1016/j.jpaa.2025.107871","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>A</em> be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of <em>φ</em>-codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>φ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span>. More precisely, we shall prove that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mroot><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>φ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of <em>A</em>. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107871"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000106","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of φ-codimensions cnφ(A), n=1,2,. More precisely, we shall prove that limncnφ(A)n always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of A. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.
具有超自同构代数的余维增长
设A是在特征为0的域上具有超自同构的有限维代数。本文研究了φ-余维序列cnφ(A), n=1,2,....的渐近性更确切地说,我们将证明limn→∞(cnφ(A)n总是存在的,并且它是一个与A的合适的半简单子代数的维数显式相关的整数。这个结果给出了在这种情况下Amitsur的一个猜想的正答案。在论文的最后部分,我们刻画了指数增长以2为界的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信