A pressure sensor made of laser-induced graphene@carbon ink in a waste sponge substrate using novel and simple fabricaing process for health monitoring

IF 5.4 Q1 CHEMISTRY, ANALYTICAL
Aoxun Liang , Weijie Liu , Yuanrui Cui , Peihua Zhang , Xinkun Chen , Junlong Zhai , Wenhao Dong , Xueye Chen
{"title":"A pressure sensor made of laser-induced graphene@carbon ink in a waste sponge substrate using novel and simple fabricaing process for health monitoring","authors":"Aoxun Liang ,&nbsp;Weijie Liu ,&nbsp;Yuanrui Cui ,&nbsp;Peihua Zhang ,&nbsp;Xinkun Chen ,&nbsp;Junlong Zhai ,&nbsp;Wenhao Dong ,&nbsp;Xueye Chen","doi":"10.1016/j.sbsr.2024.100730","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a laser-induced graphene (LIG)@ carbon ink sponge (GCS) pressure sensor. This sensor has the advantage of low cost, significantly reducing the manufacturing cost by using simple materials (carbon ink and sponge) and processes. It has a high linearity with R<sup>2</sup> = 0.996, a high sensitivity S = 3.68 kPa<sup>−1</sup>, a response time of 400 ms, and a recovery time of 300 ms. Meanwhile, to reduce the interference of sweat and water vapor in a high-humidity environment, the hydrophobic Ecoflex material is selected and improved by using SiO<sub>2</sub> for packaging, enhancing the practicability of the sensor. The sensor is soft in texture and suitable for human health monitoring, and can be attached to different parts of the human body to monitor various physiological signals. By monitoring the click frequency of the mouse and keyboard, the bending of the arm, the cough at the neck (analyzing its frequency, intensity, and time pattern), the mechanical parameters when walking at the center of the sole, the physiological signal of clenching the fist, and the pressure change when holding a water cup at the center of the palm, it provides a assistance for related fields such as motor function assessment, diagnosis of respiratory system diseases, disease diagnosis and rehabilitation treatment.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100730"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424001120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a laser-induced graphene (LIG)@ carbon ink sponge (GCS) pressure sensor. This sensor has the advantage of low cost, significantly reducing the manufacturing cost by using simple materials (carbon ink and sponge) and processes. It has a high linearity with R2 = 0.996, a high sensitivity S = 3.68 kPa−1, a response time of 400 ms, and a recovery time of 300 ms. Meanwhile, to reduce the interference of sweat and water vapor in a high-humidity environment, the hydrophobic Ecoflex material is selected and improved by using SiO2 for packaging, enhancing the practicability of the sensor. The sensor is soft in texture and suitable for human health monitoring, and can be attached to different parts of the human body to monitor various physiological signals. By monitoring the click frequency of the mouse and keyboard, the bending of the arm, the cough at the neck (analyzing its frequency, intensity, and time pattern), the mechanical parameters when walking at the center of the sole, the physiological signal of clenching the fist, and the pressure change when holding a water cup at the center of the palm, it provides a assistance for related fields such as motor function assessment, diagnosis of respiratory system diseases, disease diagnosis and rehabilitation treatment.
采用新颖简单的制造工艺,在废海绵基材中利用激光诱导graphene@carbon油墨制成压力传感器,用于健康监测
本文介绍了一种激光诱导石墨烯(LIG)@碳墨海绵(GCS)压力传感器。该传感器具有成本低的优点,通过使用简单的材料(碳墨和海绵)和工艺,大大降低了制造成本。线性度高,R2 = 0.996,灵敏度高,S = 3.68 kPa−1,响应时间为400 ms,恢复时间为300 ms。同时,为了减少高湿环境下汗水和水蒸气的干扰,选用疏水性Ecoflex材料,采用SiO2进行封装改进,增强了传感器的实用性。该传感器质地柔软,适合人体健康监测,可以附着在人体不同部位,监测各种生理信号。通过监测鼠标和键盘的点击频率、手臂的弯曲、颈部的咳嗽(分析其频率、强度和时间模式)、脚底中心行走时的力学参数、握拳时的生理信号、手掌中心拿水杯时的压力变化等,为运动功能评估、呼吸系统疾病诊断等相关领域提供辅助。疾病诊断和康复治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信