Mohammad Zaher Serdar, Fatima-Zahra Lahlou, Tareq Al-Ansari
{"title":"Enhancing resilience to climate change: Addressing cascading risks within the energy, water and food nexus","authors":"Mohammad Zaher Serdar, Fatima-Zahra Lahlou, Tareq Al-Ansari","doi":"10.1016/j.pdisas.2024.100390","DOIUrl":null,"url":null,"abstract":"<div><div>The growing global demand for energy, water, and food presents a challenge to sustainable development. This challenge is further intensified by the expanding human population and the rapid pace of industrialization, which together exert intense pressure on these essential resources. Recent trends indicate a significant increase in energy usage, and it is expected that water and food requirements will also increase. Such pressures highlight the critical need to understand and manage the interconnected nature and associated risks, including cascading risks, within the energy, water, and food sectors. This study delves into the relationship between climate change risks and the Energy-Water-Food (EWF) nexus, assessing the diverse impacts of risk categories on distinct sectors. Furthermore, it expands on the concept of cascading risks, an area often overlooked, across two primary dimensions: hazards, which can evolve into cascading and compound hazards; and systems, where failures can propagate between interdependent systems or even within their own boundaries. Building on the reviewed concepts, a framework is proposed to quantify cascading performance within EWF nexus considering the dynamic interactions of the involved elements to reinforce their resilience.</div></div>","PeriodicalId":52341,"journal":{"name":"Progress in Disaster Science","volume":"24 ","pages":"Article 100390"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Disaster Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590061724000802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The growing global demand for energy, water, and food presents a challenge to sustainable development. This challenge is further intensified by the expanding human population and the rapid pace of industrialization, which together exert intense pressure on these essential resources. Recent trends indicate a significant increase in energy usage, and it is expected that water and food requirements will also increase. Such pressures highlight the critical need to understand and manage the interconnected nature and associated risks, including cascading risks, within the energy, water, and food sectors. This study delves into the relationship between climate change risks and the Energy-Water-Food (EWF) nexus, assessing the diverse impacts of risk categories on distinct sectors. Furthermore, it expands on the concept of cascading risks, an area often overlooked, across two primary dimensions: hazards, which can evolve into cascading and compound hazards; and systems, where failures can propagate between interdependent systems or even within their own boundaries. Building on the reviewed concepts, a framework is proposed to quantify cascading performance within EWF nexus considering the dynamic interactions of the involved elements to reinforce their resilience.
期刊介绍:
Progress in Disaster Science is a Gold Open Access journal focusing on integrating research and policy in disaster research, and publishes original research papers and invited viewpoint articles on disaster risk reduction; response; emergency management and recovery.
A key part of the Journal's Publication output will see key experts invited to assess and comment on the current trends in disaster research, as well as highlight key papers.