Applications and perspectives of Ti3C2Tx MXene in electrochemical energy storage systems

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY
Ying Jiang
{"title":"Applications and perspectives of Ti3C2Tx MXene in electrochemical energy storage systems","authors":"Ying Jiang","doi":"10.1016/j.ijoes.2025.100948","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid evolution of electrochemical energy storage systems demands advanced materials that combine high electrical conductivity, controlled surface chemistry, and structural stability. This review examines the recent developments in Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene synthesis, structural properties, and applications in energy storage devices. We analyze various preparation methods, including traditional HF etching, safer fluoride-free alternatives, and emerging green synthesis routes, highlighting their impact on material quality and scalability. The review explores the critical role of surface termination groups and interlayer spacing in determining electrochemical performance, with particular emphasis on the material's exceptional electrical conductivity (up to 20,000 S/cm) and tunable work function (1.6–6.25 eV). Detailed examination of composite formation techniques and interface engineering reveals significant improvements in device performance across multiple applications, including lithium-ion batteries achieving specific capacities of 3500 mAh/g with Si composite, lithium-sulfur batteries demonstrating strong polysulfide binding energies (&gt;1.4 eV), and supercapacitors exhibiting volumetric capacitances exceeding 1000 F/cm³ . Recent breakthroughs in electrode design and material optimization have led to enhanced stability with some composite maintaining 90 % capacity retention over 2000 cycles and demonstrating rate capabilities up to 100 C in various energy storage applications. The integration of novel fabrication approaches and strategic material combinations continues to expand the potential applications of this versatile material in next-generation energy storage technologies.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 2","pages":"Article 100948"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000239","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of electrochemical energy storage systems demands advanced materials that combine high electrical conductivity, controlled surface chemistry, and structural stability. This review examines the recent developments in Ti3C2Tx MXene synthesis, structural properties, and applications in energy storage devices. We analyze various preparation methods, including traditional HF etching, safer fluoride-free alternatives, and emerging green synthesis routes, highlighting their impact on material quality and scalability. The review explores the critical role of surface termination groups and interlayer spacing in determining electrochemical performance, with particular emphasis on the material's exceptional electrical conductivity (up to 20,000 S/cm) and tunable work function (1.6–6.25 eV). Detailed examination of composite formation techniques and interface engineering reveals significant improvements in device performance across multiple applications, including lithium-ion batteries achieving specific capacities of 3500 mAh/g with Si composite, lithium-sulfur batteries demonstrating strong polysulfide binding energies (>1.4 eV), and supercapacitors exhibiting volumetric capacitances exceeding 1000 F/cm³ . Recent breakthroughs in electrode design and material optimization have led to enhanced stability with some composite maintaining 90 % capacity retention over 2000 cycles and demonstrating rate capabilities up to 100 C in various energy storage applications. The integration of novel fabrication approaches and strategic material combinations continues to expand the potential applications of this versatile material in next-generation energy storage technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信