Computing supersingular endomorphism rings using inseparable endomorphisms

IF 0.8 2区 数学 Q2 MATHEMATICS
Jenny Fuselier , Annamaria Iezzi , Mark Kozek , Travis Morrison , Changningphaabi Namoijam
{"title":"Computing supersingular endomorphism rings using inseparable endomorphisms","authors":"Jenny Fuselier ,&nbsp;Annamaria Iezzi ,&nbsp;Mark Kozek ,&nbsp;Travis Morrison ,&nbsp;Changningphaabi Namoijam","doi":"10.1016/j.jalgebra.2025.01.012","DOIUrl":null,"url":null,"abstract":"<div><div>We give an algorithm for computing an inseparable endomorphism of a supersingular elliptic curve <em>E</em> defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>, which, conditional on GRH, runs in expected <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> bit operations and requires <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> storage. This matches the time and storage complexity of the best conditional algorithms for computing a nontrivial supersingular endomorphism, such as those of Eisenträger–Hallgren–Leonardi–Morrison–Park and Delfs–Galbraith. Unlike these prior algorithms, which require two paths from <em>E</em> to a curve defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, the algorithm we introduce only requires one; thus when combined with the algorithm of Corte-Real Santos–Costello–Shi, our algorithm will be faster in practice. Moreover, our algorithm produces endomorphisms with predictable discriminants, enabling us to prove properties about the orders they generate. With two calls to our algorithm, we can provably compute a Bass suborder of <span><math><mi>End</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span>. This result is then used in an algorithm for computing a basis for <span><math><mi>End</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> with the same time complexity, assuming GRH. We also argue that <span><math><mi>End</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> can be computed using <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> calls to our algorithm along with polynomial overhead, conditional on a heuristic assumption about the distribution of the discriminants of these endomorphisms. Conditional on GRH and this additional heuristic, this yields a <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> algorithm for computing <span><math><mi>End</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> requiring <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> storage.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"668 ","pages":"Pages 145-189"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000353","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give an algorithm for computing an inseparable endomorphism of a supersingular elliptic curve E defined over Fp2, which, conditional on GRH, runs in expected O(p1/2(logp)2(loglogp)3) bit operations and requires O((logp)2) storage. This matches the time and storage complexity of the best conditional algorithms for computing a nontrivial supersingular endomorphism, such as those of Eisenträger–Hallgren–Leonardi–Morrison–Park and Delfs–Galbraith. Unlike these prior algorithms, which require two paths from E to a curve defined over Fp, the algorithm we introduce only requires one; thus when combined with the algorithm of Corte-Real Santos–Costello–Shi, our algorithm will be faster in practice. Moreover, our algorithm produces endomorphisms with predictable discriminants, enabling us to prove properties about the orders they generate. With two calls to our algorithm, we can provably compute a Bass suborder of End(E). This result is then used in an algorithm for computing a basis for End(E) with the same time complexity, assuming GRH. We also argue that End(E) can be computed using O(1) calls to our algorithm along with polynomial overhead, conditional on a heuristic assumption about the distribution of the discriminants of these endomorphisms. Conditional on GRH and this additional heuristic, this yields a O(p1/2(logp)2(loglogp)3) algorithm for computing End(E) requiring O((logp)2) storage.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信