Palanivel Molaiyan , Buket Boz , Glaydson Simoes dos Reis , Rafal Sliz , Shuo Wang , Marco Borsari , Ulla Lassi , Andrea Paolella
{"title":"Paving the path toward silicon as anode material for future solid-state batteries","authors":"Palanivel Molaiyan , Buket Boz , Glaydson Simoes dos Reis , Rafal Sliz , Shuo Wang , Marco Borsari , Ulla Lassi , Andrea Paolella","doi":"10.1016/j.etran.2024.100391","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state batteries (SSBs) have emerged as an important technology for powering future electric vehicles and other applications due to their potential for enhanced safety and higher energy density compared to lithium-ion batteries (LIBs). Among future energy storage systems, SSBs (either semi or full SSBs) are the most promising candidates in terms of safety, cost, performance, and compactness. There has been a great effort to utilize silicon (Si) anode in SSBs due to its high specific capacity (3590 mAh g<sup>−1</sup>), low cost, and earth abundance. SSBs with silicon anodes displayed attractive application prospects. The current research efforts showed that there is a great need to understand electrochemical performance, especially the interphase behavior, Si material design, and advanced tools for analytical characterization. In this review, we provide insights about the Si anode design, interface issues, SEI formation, failure mechanisms, and material modifications for the development of next-generation Si-based SSBs of use to bridge the gap between applied research and industrial scale applications.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"23 ","pages":"Article 100391"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259011682400081X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state batteries (SSBs) have emerged as an important technology for powering future electric vehicles and other applications due to their potential for enhanced safety and higher energy density compared to lithium-ion batteries (LIBs). Among future energy storage systems, SSBs (either semi or full SSBs) are the most promising candidates in terms of safety, cost, performance, and compactness. There has been a great effort to utilize silicon (Si) anode in SSBs due to its high specific capacity (3590 mAh g−1), low cost, and earth abundance. SSBs with silicon anodes displayed attractive application prospects. The current research efforts showed that there is a great need to understand electrochemical performance, especially the interphase behavior, Si material design, and advanced tools for analytical characterization. In this review, we provide insights about the Si anode design, interface issues, SEI formation, failure mechanisms, and material modifications for the development of next-generation Si-based SSBs of use to bridge the gap between applied research and industrial scale applications.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.