Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings

Andrea Sánchez-Arroyo , Mario Rodríguez-Reyes , Gerardo Daniel Olvera-Romero , José Refugio Parga-Torres , Zully Matamoros-Veloza , Brandon Osvaldo Villarreal-Fuentes , Dagoberto Vázquez-Obregón
{"title":"Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings","authors":"Andrea Sánchez-Arroyo ,&nbsp;Mario Rodríguez-Reyes ,&nbsp;Gerardo Daniel Olvera-Romero ,&nbsp;José Refugio Parga-Torres ,&nbsp;Zully Matamoros-Veloza ,&nbsp;Brandon Osvaldo Villarreal-Fuentes ,&nbsp;Dagoberto Vázquez-Obregón","doi":"10.1016/j.nxsust.2025.100103","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M), a composite with 85 wt% Mg and 15 wt% cupola slag (85M-15C), and two hybrid composites with 85 wt% Mg combined with 12.5 wt% and 5 wt% cupola slag, and 2.5 wt% and 5 wt% Al₂O₃, respectively, forming the 85M-12.5C-2.5 A and 85M-10C-5A systems. Their mechanical properties and corrosion resistance in a 3.5 wt% NaCl solution were systematically evaluated. Microstructural analysis revealed a significant grain size reduction in the reinforced systems, with the 85M-12.5C-2.5 A system achieving an average grain size of 9.4 µm compared to 22.5 µm in the unreinforced 100 M system. The incorporation of CaSiO₃ and Al₂O₃ reinforcements improved microhardness by up to 55 % and increased compressive strength to a maximum of 329.13 MPa. These enhancements were attributed to grain size and the synergistic effects of micro- and nano-reinforcements. Additionally, the reinforced composites demonstrated superior corrosion resistance, as evidenced by reduced degradation rates in the NaCl solution. This improvement was attributed to the formation of protective Mg(OH)₂ layers, with the 85M-10C-5A system exhibiting the lowest corrosion current density (122 μA/cm²). These findings underscore the potential of magnesium matrix composites reinforced with cupola slag and Al₂O₃ as lightweight, durable, and sustainable materials for BPS housings, addressing both performance and environmental considerations.</div></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"6 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823625000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M), a composite with 85 wt% Mg and 15 wt% cupola slag (85M-15C), and two hybrid composites with 85 wt% Mg combined with 12.5 wt% and 5 wt% cupola slag, and 2.5 wt% and 5 wt% Al₂O₃, respectively, forming the 85M-12.5C-2.5 A and 85M-10C-5A systems. Their mechanical properties and corrosion resistance in a 3.5 wt% NaCl solution were systematically evaluated. Microstructural analysis revealed a significant grain size reduction in the reinforced systems, with the 85M-12.5C-2.5 A system achieving an average grain size of 9.4 µm compared to 22.5 µm in the unreinforced 100 M system. The incorporation of CaSiO₃ and Al₂O₃ reinforcements improved microhardness by up to 55 % and increased compressive strength to a maximum of 329.13 MPa. These enhancements were attributed to grain size and the synergistic effects of micro- and nano-reinforcements. Additionally, the reinforced composites demonstrated superior corrosion resistance, as evidenced by reduced degradation rates in the NaCl solution. This improvement was attributed to the formation of protective Mg(OH)₂ layers, with the 85M-10C-5A system exhibiting the lowest corrosion current density (122 μA/cm²). These findings underscore the potential of magnesium matrix composites reinforced with cupola slag and Al₂O₃ as lightweight, durable, and sustainable materials for BPS housings, addressing both performance and environmental considerations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信