Genus bound of curves on surfaces of almost minimal degree

IF 0.7 2区 数学 Q2 MATHEMATICS
Wanseok Lee , Euisung Park
{"title":"Genus bound of curves on surfaces of almost minimal degree","authors":"Wanseok Lee ,&nbsp;Euisung Park","doi":"10.1016/j.jpaa.2025.107891","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi><mo>⊂</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, be a nondegenerate projective integral curve of degree <em>d</em> and arithmetic genus <em>g</em>. Castelnuovo theory says that<ul><li><span>(<em>i</em>)</span><span><div>if <span><math><mi>g</mi><mo>&gt;</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of minimal degree, and</div></span></li><li><span>(<em>ii</em>)</span><span><div>if <span><math><mi>g</mi><mo>&gt;</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of degree ≤<em>r</em>.</div></span></li></ul> In this paper, we prove that if <span><math><mi>g</mi><mo>&gt;</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of minimal degree or a del Pezzo surface. To this aim, we show that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> is the upper bound of <em>g</em> when <span><math><mi>C</mi></math></span> lies on a surface of degree <em>r</em> which is not a del Pezzo surface. We also provide a specific construction of curves with genus equal to the upper bound <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107891"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000301","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let CPr, r3, be a nondegenerate projective integral curve of degree d and arithmetic genus g. Castelnuovo theory says that
  • (i)
    if g>π1(d,r) then C is contained in a surface of minimal degree, and
  • (ii)
    if g>π2(d,r) then C is contained in a surface of degree ≤r.
In this paper, we prove that if g>π0(d,r+1)+1 then C is contained in a surface of minimal degree or a del Pezzo surface. To this aim, we show that π0(d,r+1)+1 is the upper bound of g when C lies on a surface of degree r which is not a del Pezzo surface. We also provide a specific construction of curves with genus equal to the upper bound π0(d,r+1)+1.
几乎最小次曲面上曲线的属界
设C∧Pr, r≥3是一条阶数为d,算术格为g的非简并投影积分曲线。Castelnuovo理论说(i)如果g>;π1(d,r)则C包含在最小阶数的曲面中,(ii)如果g>;π2(d,r)则C包含在阶数≤r的曲面中。本文证明了如果g>;π0(d,r+1)+1,则C包含在最小次曲面或del Pezzo曲面中。为此,我们证明了π0(d,r+1)+1是当C位于非del Pezzo曲面的r次曲面上时g的上界。我们还提供了一种特殊的构造,其属等于π0(d,r+1)+1的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信