David I. Spivak , Richard Garner , Aaron David Fairbanks
{"title":"Functorial aggregation","authors":"David I. Spivak , Richard Garner , Aaron David Fairbanks","doi":"10.1016/j.jpaa.2025.107883","DOIUrl":null,"url":null,"abstract":"<div><div>We study polynomial comonads and polynomial bicomodules. Polynomial comonads amount to categories. Polynomial bicomodules between categories amount to parametric right adjoint functors between corresponding copresheaf categories. These may themselves be understood as generalized polynomial functors. They are also called data migration functors because of applications in categorical database theory. We investigate several universal constructions in the framed bicategory of categories, retrofunctors, and parametric right adjoints. We then use the theory we develop to model database aggregation alongside querying, all within this rich ecosystem.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107883"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000222","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study polynomial comonads and polynomial bicomodules. Polynomial comonads amount to categories. Polynomial bicomodules between categories amount to parametric right adjoint functors between corresponding copresheaf categories. These may themselves be understood as generalized polynomial functors. They are also called data migration functors because of applications in categorical database theory. We investigate several universal constructions in the framed bicategory of categories, retrofunctors, and parametric right adjoints. We then use the theory we develop to model database aggregation alongside querying, all within this rich ecosystem.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.