The slope of the v-function and the Waldschmidt constant

IF 0.7 2区 数学 Q2 MATHEMATICS
Manohar Kumar , Ramakrishna Nanduri , Kamalesh Saha
{"title":"The slope of the v-function and the Waldschmidt constant","authors":"Manohar Kumar ,&nbsp;Ramakrishna Nanduri ,&nbsp;Kamalesh Saha","doi":"10.1016/j.jpaa.2025.107881","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the asymptotic behavior of the v-number of a Noetherian graded filtration <span><math><mi>I</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of a Noetherian <span><math><mi>N</mi></math></span>-graded domain <em>R</em>. Recently, it was shown that <span><math><mi>v</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></math></span> is periodically linear in <em>k</em> for <span><math><mi>k</mi><mo>≫</mo><mn>0</mn></math></span>. We show that all these linear functions have the same slope, i.e. <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mfrac><mrow><mi>v</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span> exists, which is equal to <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mfrac><mrow><mi>α</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>, where <span><math><mi>α</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> denotes the minimum degree of a non-zero element in <em>I</em>. In particular, for any Noetherian symbolic filtration <span><math><mi>I</mi><mo>=</mo><msub><mrow><mo>{</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of <em>R</em>, it follows that <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mfrac><mrow><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac><mo>=</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>I</mi><mo>)</mo></math></span>, the Waldschmidt constant of <em>I</em>. Next, for a non-equigenerated square-free monomial ideal <em>I</em>, we prove that <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>≫</mo><mn>0</mn></math></span>. Also, for an ideal <em>I</em> having the symbolic strong persistence property, we give a linear upper bound on <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span>. As an application, we derive some criteria for a square-free monomial ideal <em>I</em> to satisfy <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, and provide several examples in support. In addition, for any simple graph <em>G</em>, we establish that <span><math><mi>v</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>v</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>α</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> if and only if <em>G</em> is a Cohen-Macaulay very-well covered graph, where <span><math><mi>J</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cover ideal of <em>G</em>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107881"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000209","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the asymptotic behavior of the v-number of a Noetherian graded filtration I={I[k]}k0 of a Noetherian N-graded domain R. Recently, it was shown that v(I[k]) is periodically linear in k for k0. We show that all these linear functions have the same slope, i.e. limkv(I[k])k exists, which is equal to limkα(I[k])k, where α(I) denotes the minimum degree of a non-zero element in I. In particular, for any Noetherian symbolic filtration I={I(k)}k0 of R, it follows that limkv(I(k))k=αˆ(I), the Waldschmidt constant of I. Next, for a non-equigenerated square-free monomial ideal I, we prove that v(I(k))reg(R/I(k)) for k0. Also, for an ideal I having the symbolic strong persistence property, we give a linear upper bound on v(I(k)). As an application, we derive some criteria for a square-free monomial ideal I to satisfy v(I(k))reg(R/I(k)) for all k1, and provide several examples in support. In addition, for any simple graph G, we establish that v(J(G)(k))reg(R/J(G)(k)) for all k1, and v(J(G)(k))=reg(R/J(G)(k))=α(J(G)(k))1 for all k1 if and only if G is a Cohen-Macaulay very-well covered graph, where J(G) is the cover ideal of G.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信