Artinian Gorenstein algebras of socle degree three which have the weak Lefschetz property

IF 0.7 2区 数学 Q2 MATHEMATICS
Andrew R. Kustin
{"title":"Artinian Gorenstein algebras of socle degree three which have the weak Lefschetz property","authors":"Andrew R. Kustin","doi":"10.1016/j.jpaa.2025.107878","DOIUrl":null,"url":null,"abstract":"<div><div>Let <strong><em>k</em></strong> be an arbitrary field and Φ be the Macaulay inverse system for a standard graded Artinian Gorenstein <strong><em>k</em></strong>-algebra <em>A</em> of arbitrary embedding dimension <em>d</em> and socle degree three. Assume that <em>A</em> has the weak Lefschetz property. We identify generators for the defining ideal of <em>A</em> as a quotient of a polynomial ring <em>P</em> over <strong><em>k</em></strong> with <em>d</em> variables and we give an explicit homogeneous resolution, <span><math><mi>X</mi></math></span>, of <em>A</em> by free <em>P</em>-modules. We identify a symmetric bilinear form <em>G</em> which determines how to turn <span><math><mi>X</mi></math></span> into the minimal resolution of <em>A</em>. In particular, when <em>G</em> is identically zero, then <span><math><mi>X</mi></math></span> is already the minimal resolution of <em>A</em>.</div><div>The resolution <span><math><mi>X</mi></math></span> is closely related to the resolution of a Gorenstein algebra with socle degree two. A Gorenstein algebra with socle degree two has a resolution that is as linear as possible.</div><div>The corresponding project has previously been carried out (by the present author, and also by Macias Marques, Veliche, and Weyman), when the embedding dimension <em>d</em> is equal to 4.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107878"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000179","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be an arbitrary field and Φ be the Macaulay inverse system for a standard graded Artinian Gorenstein k-algebra A of arbitrary embedding dimension d and socle degree three. Assume that A has the weak Lefschetz property. We identify generators for the defining ideal of A as a quotient of a polynomial ring P over k with d variables and we give an explicit homogeneous resolution, X, of A by free P-modules. We identify a symmetric bilinear form G which determines how to turn X into the minimal resolution of A. In particular, when G is identically zero, then X is already the minimal resolution of A.
The resolution X is closely related to the resolution of a Gorenstein algebra with socle degree two. A Gorenstein algebra with socle degree two has a resolution that is as linear as possible.
The corresponding project has previously been carried out (by the present author, and also by Macias Marques, Veliche, and Weyman), when the embedding dimension d is equal to 4.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信