Uncertainty impact of isotherm models on liquid-phase adsorption thermodynamics: A bayesian inference perspective

Thiago Reschützegger, Nina Paula Gonçalves Salau
{"title":"Uncertainty impact of isotherm models on liquid-phase adsorption thermodynamics: A bayesian inference perspective","authors":"Thiago Reschützegger,&nbsp;Nina Paula Gonçalves Salau","doi":"10.1016/j.clce.2025.100146","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid-phase adsorption, a fundamental process where molecules in a liquid medium adhere to a solid surface, plays a crucial role in various chemical engineering applications such as wastewater decontamination and solvent recovery. These phenomena can be described by equilibrium models, which offer insight into adsorption capacity and thermodynamic properties, such as enthalpy and entropy variations, yet parameter uncertainty often undermines their accuracy. This study applies a Bayesian approach to assess uncertainties within adsorption models quantitatively and qualitatively. Through Bayesian analysis, substantial parameter variability was identified in the Sips model, with posterior distributions for thermodynamic parameters revealing broad uncertainty regions and a high likelihood of exothermic enthalpy values (i.e. <span><math><mrow><mi>P</mi><mo>(</mo><mrow><mstyle><mi>Δ</mi></mstyle><msup><mi>H</mi><mo>∘</mo></msup><mo>&lt;</mo><mn>0</mn></mrow><mo>)</mo><mo>&gt;</mo><mn>0.5</mn></mrow></math></span>), which often deviate from established thermodynamic expectations across different systems. Despite achieving good fit statistics (e.g., R² ≈ 0.99), this flexibility in the Sips model does not consistently translate into reliable thermodynamic interpretations. In contrast, the Langmuir model yields more stable estimates, offering narrower and thermodynamically consistent probability distributions for equilibrium constants (e.g., ΔH° &gt; 0 and ΔS° &gt; 0) and Gibbs free energy changes across temperature variations, albeit with slightly lower fit statistics (e.g., R² ≈ 0.97). These findings highlight the need for uncertainty analysis in model selection and advise caution in attributing physical significance to isotherm-derived parameters. This study advocates for a balanced approach to model choice, incorporating uncertainty quantification to enhance the reliability of adsorption predictions in both research and industrial applications.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100146"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid-phase adsorption, a fundamental process where molecules in a liquid medium adhere to a solid surface, plays a crucial role in various chemical engineering applications such as wastewater decontamination and solvent recovery. These phenomena can be described by equilibrium models, which offer insight into adsorption capacity and thermodynamic properties, such as enthalpy and entropy variations, yet parameter uncertainty often undermines their accuracy. This study applies a Bayesian approach to assess uncertainties within adsorption models quantitatively and qualitatively. Through Bayesian analysis, substantial parameter variability was identified in the Sips model, with posterior distributions for thermodynamic parameters revealing broad uncertainty regions and a high likelihood of exothermic enthalpy values (i.e. P(ΔH<0)>0.5), which often deviate from established thermodynamic expectations across different systems. Despite achieving good fit statistics (e.g., R² ≈ 0.99), this flexibility in the Sips model does not consistently translate into reliable thermodynamic interpretations. In contrast, the Langmuir model yields more stable estimates, offering narrower and thermodynamically consistent probability distributions for equilibrium constants (e.g., ΔH° > 0 and ΔS° > 0) and Gibbs free energy changes across temperature variations, albeit with slightly lower fit statistics (e.g., R² ≈ 0.97). These findings highlight the need for uncertainty analysis in model selection and advise caution in attributing physical significance to isotherm-derived parameters. This study advocates for a balanced approach to model choice, incorporating uncertainty quantification to enhance the reliability of adsorption predictions in both research and industrial applications.
等温线模型对液相吸附热力学的不确定性影响:贝叶斯推理的视角
液相吸附是液体介质中的分子附着在固体表面的基本过程,在废水净化和溶剂回收等各种化学工程应用中起着至关重要的作用。这些现象可以通过平衡模型来描述,平衡模型提供了对吸附能力和热力学性质(如焓和熵变化)的深入了解,但参数的不确定性往往会破坏其准确性。本研究应用贝叶斯方法定量和定性地评估吸附模型中的不确定性。通过贝叶斯分析,在Sips模型中发现了大量的参数可变性,热力学参数的后验分布揭示了广泛的不确定性区域和放热焓值(即P(ΔH°<0)>0.5)的高可能性,这些值在不同系统中经常偏离既定的热力学期望。尽管获得了良好的拟合统计(例如,R²≈0.99),但Sips模型中的这种灵活性并不能始终转化为可靠的热力学解释。相比之下,Langmuir模型产生了更稳定的估计,为平衡常数提供了更窄的和热力学一致的概率分布(例如ΔH°>;0和ΔS°>;0)和吉布斯自由能随温度变化而变化,尽管拟合统计量略低(例如,R²≈0.97)。这些发现强调了在模型选择中需要进行不确定性分析,并建议在将物理意义归因于等温线衍生参数时要谨慎。本研究提倡采用一种平衡的方法来选择模型,结合不确定性量化来提高研究和工业应用中吸附预测的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信