Harnessing natural polymers and nanoparticles: Synergistic scaffold design for improved wound healing

Anitha S , Nandini Robin Nadar , Srividya Shivakumar , Sharma S C , Siddharth P , Surekha Varalakshmi V , Rajesh Lenka , Rajadurai S
{"title":"Harnessing natural polymers and nanoparticles: Synergistic scaffold design for improved wound healing","authors":"Anitha S ,&nbsp;Nandini Robin Nadar ,&nbsp;Srividya Shivakumar ,&nbsp;Sharma S C ,&nbsp;Siddharth P ,&nbsp;Surekha Varalakshmi V ,&nbsp;Rajesh Lenka ,&nbsp;Rajadurai S","doi":"10.1016/j.hybadv.2025.100381","DOIUrl":null,"url":null,"abstract":"<div><div>Skin health is a vital indicator of overall well-being, notably influencing emotional and psychological states. Skin injuries which include, burns and diabetic, venous, and pressure ulcers are significant concerns in health care that are often demanding for appropriate management programs. Skin injuries may be due to acute or chronic trauma, infections, and operations and can cause severe dysfunction or death. Hence, early clinical intervention becomes crucial in managing the problem. Wound care involves many strategies from simple local dressing to complex debridement techniques such as bioactive dressings and skin grafting. Conventional wound healing products do not heal wounds adequately and can cause scarring, suggesting the possibility of new biomaterials. The current developments of applying natural polymers, which are large organic compounds obtained from renewable resources, have revealed potential utilization in biomedicine due to their inherent antibacterial and antioxidant features. These polymers are biocompatible, biodegradable, and nontoxic to the environment, therefore of great importance in developing sustainable products. The incorporation of nanoparticles brings beneficial changes to natural polymers where the antibacterial, anti-inflammatory, and mechanical property is improved. The synergistic approach results in novel scaffold designs that promote cell functions and mimic the extracellular matrix (ECM) to further enhance wound healing. The present review aims to emphasize the potential and application of natural polymers in wound treatment.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"8 ","pages":"Article 100381"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X25000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Skin health is a vital indicator of overall well-being, notably influencing emotional and psychological states. Skin injuries which include, burns and diabetic, venous, and pressure ulcers are significant concerns in health care that are often demanding for appropriate management programs. Skin injuries may be due to acute or chronic trauma, infections, and operations and can cause severe dysfunction or death. Hence, early clinical intervention becomes crucial in managing the problem. Wound care involves many strategies from simple local dressing to complex debridement techniques such as bioactive dressings and skin grafting. Conventional wound healing products do not heal wounds adequately and can cause scarring, suggesting the possibility of new biomaterials. The current developments of applying natural polymers, which are large organic compounds obtained from renewable resources, have revealed potential utilization in biomedicine due to their inherent antibacterial and antioxidant features. These polymers are biocompatible, biodegradable, and nontoxic to the environment, therefore of great importance in developing sustainable products. The incorporation of nanoparticles brings beneficial changes to natural polymers where the antibacterial, anti-inflammatory, and mechanical property is improved. The synergistic approach results in novel scaffold designs that promote cell functions and mimic the extracellular matrix (ECM) to further enhance wound healing. The present review aims to emphasize the potential and application of natural polymers in wound treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信