Bounds and extremal graphs for monitoring edge-geodetic sets in graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Florent Foucaud , Clara Marcille , Zin Mar Myint , R.B. Sandeep , Sagnik Sen , S. Taruni
{"title":"Bounds and extremal graphs for monitoring edge-geodetic sets in graphs","authors":"Florent Foucaud ,&nbsp;Clara Marcille ,&nbsp;Zin Mar Myint ,&nbsp;R.B. Sandeep ,&nbsp;Sagnik Sen ,&nbsp;S. Taruni","doi":"10.1016/j.dam.2024.12.032","DOIUrl":null,"url":null,"abstract":"<div><div>A monitoring edge-geodetic set, or simply an MEG-set, of a graph <span><math><mi>G</mi></math></span> is a vertex subset <span><math><mrow><mi>M</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that given any edge <span><math><mi>e</mi></math></span> of <span><math><mi>G</mi></math></span>, <span><math><mi>e</mi></math></span> lies on every shortest <span><math><mi>u</mi></math></span>-<span><math><mi>v</mi></math></span> path of <span><math><mi>G</mi></math></span>, for some <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>M</mi></mrow></math></span>. The monitoring edge-geodetic number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>m</mi><mi>e</mi><mi>g</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum cardinality of such an MEG-set. This notion provides a graph theoretic model of the network monitoring problem.</div><div>In this article, we compare <span><math><mrow><mi>m</mi><mi>e</mi><mi>g</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with some other graph theoretic parameters stemming from the network monitoring problem and provide examples of graphs having prescribed values for each of these parameters. We also characterize graphs <span><math><mi>G</mi></math></span> that have <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as their minimum MEG-set, which settles an open problem due to Foucaud et al. (CALDAM 2023), and prove that some classes of graphs fall within this characterization. We also provide a general upper bound for <span><math><mrow><mi>m</mi><mi>e</mi><mi>g</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for sparse graphs in terms of their girth, and later refine the upper bound using the chromatic number of <span><math><mi>G</mi></math></span>. We examine the change in <span><math><mrow><mi>m</mi><mi>e</mi><mi>g</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with respect to two fundamental graph operations: clique-sum and subdivisions. In both cases, we provide a lower and an upper bound of the possible amount of changes and provide (almost) tight examples.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 106-119"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005493","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A monitoring edge-geodetic set, or simply an MEG-set, of a graph G is a vertex subset MV(G) such that given any edge e of G, e lies on every shortest u-v path of G, for some u,vM. The monitoring edge-geodetic number of G, denoted by meg(G), is the minimum cardinality of such an MEG-set. This notion provides a graph theoretic model of the network monitoring problem.
In this article, we compare meg(G) with some other graph theoretic parameters stemming from the network monitoring problem and provide examples of graphs having prescribed values for each of these parameters. We also characterize graphs G that have V(G) as their minimum MEG-set, which settles an open problem due to Foucaud et al. (CALDAM 2023), and prove that some classes of graphs fall within this characterization. We also provide a general upper bound for meg(G) for sparse graphs in terms of their girth, and later refine the upper bound using the chromatic number of G. We examine the change in meg(G) with respect to two fundamental graph operations: clique-sum and subdivisions. In both cases, we provide a lower and an upper bound of the possible amount of changes and provide (almost) tight examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信