{"title":"Pebble accretion and siderophile element partitioning between Earth's mantle and core","authors":"Peter L. Olson, Zachary D. Sharp, Susmita Garai","doi":"10.1016/j.pepi.2024.107295","DOIUrl":null,"url":null,"abstract":"<div><div>Pebble accretion is an efficient mechanism for early terrestrial protoplanet growth and differentiation. Metal-silicate partitioning of moderately siderophile elements offers constraints on the role of pebble accretion in Earth's formation and the segregation of its core. Here, we determine pebble accretion properties of the proto-Earth that are consistent with metal-silicate partitioning measurements and siderophile abundances in the mantle and core. We combine a pebble accretion model that includes mass balances for siderophile abundances in the mantle and core of a growing terrestrial protoplanet with experimentally-determined partition functions for seven moderately siderophile elements: Ni, Co, V, Cr, Mo, Mn, and W. Mantle and core abundances of these elements during pebble accretion are calculated, as well as changes to their abundances following the addition of large and giant impactors built with pebbles. Model results are compared to the estimated abundances of these elements in Earth's primitive mantle and core. We find that metal-silicate partitioning of these elements is especially sensitive to the total mass of accreted pebbles. Best fits to primitive mantle and core siderophile abundances are found in cases where the proto-Earth accreted with pebbles to approximately 0.6 times its present mass under slightly reducing conditions, then added the remaining mass via one or more impactors with the same composition. We also find that pebbles consisting of chondritic components (chondrules, metal grains, AOAs, and CAIs) generally yield better partitioning results compared to pebbles made from chondrites.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"358 ","pages":"Article 107295"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124001535","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pebble accretion is an efficient mechanism for early terrestrial protoplanet growth and differentiation. Metal-silicate partitioning of moderately siderophile elements offers constraints on the role of pebble accretion in Earth's formation and the segregation of its core. Here, we determine pebble accretion properties of the proto-Earth that are consistent with metal-silicate partitioning measurements and siderophile abundances in the mantle and core. We combine a pebble accretion model that includes mass balances for siderophile abundances in the mantle and core of a growing terrestrial protoplanet with experimentally-determined partition functions for seven moderately siderophile elements: Ni, Co, V, Cr, Mo, Mn, and W. Mantle and core abundances of these elements during pebble accretion are calculated, as well as changes to their abundances following the addition of large and giant impactors built with pebbles. Model results are compared to the estimated abundances of these elements in Earth's primitive mantle and core. We find that metal-silicate partitioning of these elements is especially sensitive to the total mass of accreted pebbles. Best fits to primitive mantle and core siderophile abundances are found in cases where the proto-Earth accreted with pebbles to approximately 0.6 times its present mass under slightly reducing conditions, then added the remaining mass via one or more impactors with the same composition. We also find that pebbles consisting of chondritic components (chondrules, metal grains, AOAs, and CAIs) generally yield better partitioning results compared to pebbles made from chondrites.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.