A method for simultaneously determining Earth's magnetic field and mantle conductivity models using MSS-1 and Swarm satellite magnetic data

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Hongbo Yao, Juyuan Xu, Keke Zhang
{"title":"A method for simultaneously determining Earth's magnetic field and mantle conductivity models using MSS-1 and Swarm satellite magnetic data","authors":"Hongbo Yao,&nbsp;Juyuan Xu,&nbsp;Keke Zhang","doi":"10.1016/j.pepi.2024.107296","DOIUrl":null,"url":null,"abstract":"<div><div>The magnetospheric primary and its Earth mantle-induced fields are essential components of geomagnetic field models. Previous geomagnetic field modeling methods typically use a fixed <em>a priori</em> Earth's mantle conductivity model to account for the induced field. This treatment may reduce accuracy, as electromagnetic induction depends on conductivity models. Here, we propose a new method that simultaneously determines the mantle conductivity model during geomagnetic field modeling. This method has the advantages of (i) self-consistently accounting for the induced field in geomagnetic field modeling, and (ii) simultaneously providing valuable information on Earth's internal structure. We implement the method into a new computationally parallel field modeling framework, which scales nearly linearly up to a large number of MPI cores. The Macau Science Satellite-1 (MSS-1), primarily aiming to accurately measure the Earth's magnetic field, was successfully launched on May 21, 2023. We apply our method to the magnetic data from MSS-1 as well as Swarm satellites and obtain the first self-consistent models of Earth's magnetic field and mantle conductivity. We also investigate how different conductivity models affect geomagnetic field modeling. Our results show that a fixed <em>a priori</em> conductivity model introduces field differences of about 2–4 nT in magnetic field models. These field differences, which are larger than the measuring accuracy of modern geomagnetic satellites, can be avoided by our method.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"358 ","pages":"Article 107296"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124001547","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetospheric primary and its Earth mantle-induced fields are essential components of geomagnetic field models. Previous geomagnetic field modeling methods typically use a fixed a priori Earth's mantle conductivity model to account for the induced field. This treatment may reduce accuracy, as electromagnetic induction depends on conductivity models. Here, we propose a new method that simultaneously determines the mantle conductivity model during geomagnetic field modeling. This method has the advantages of (i) self-consistently accounting for the induced field in geomagnetic field modeling, and (ii) simultaneously providing valuable information on Earth's internal structure. We implement the method into a new computationally parallel field modeling framework, which scales nearly linearly up to a large number of MPI cores. The Macau Science Satellite-1 (MSS-1), primarily aiming to accurately measure the Earth's magnetic field, was successfully launched on May 21, 2023. We apply our method to the magnetic data from MSS-1 as well as Swarm satellites and obtain the first self-consistent models of Earth's magnetic field and mantle conductivity. We also investigate how different conductivity models affect geomagnetic field modeling. Our results show that a fixed a priori conductivity model introduces field differences of about 2–4 nT in magnetic field models. These field differences, which are larger than the measuring accuracy of modern geomagnetic satellites, can be avoided by our method.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信