Energy, economic, and environmental analysis of a waste-to-energy-to-zero system

Sakkarat Khwamman , Nattaporn Chaiyat
{"title":"Energy, economic, and environmental analysis of a waste-to-energy-to-zero system","authors":"Sakkarat Khwamman ,&nbsp;Nattaporn Chaiyat","doi":"10.1016/j.clce.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a new waste-to-energy-to-zero management under the energy, economic, and environmental implications. The survey data implies a total municipal solid waste (MSW) generation of 17.85 Ton/d. The proportions of combustible waste, noncombustible waste, and organic waste are 31.63%, 35.24%, and 33.13%, respectively. Combustion heat is utilized to fuel a combined cooling, heating, and power (CCHP) system. A power output is generated with a two-stage organic Rankine cycle (ORC) of 55.57 kW<sub>e</sub>, a cooling process in an absorption chiller of 91.06 kW, and a heating process in a drying room of 207.39 kW. A total energy output of 306.98 kW and an energy efficiency of 22.38% are simulated in the waste CCHP system. The solar photovoltaic (PV) rooftop system produced 2,755.62 kWh/d of power generation at a maximum efficiency of 16.28%. A waste-to-energy system has a net power output of 2,823.86 kWh/d at an overall efficiency of 18.34%. Concrete, copper, steel, and gypsum materials significantly influence all midpoint impact categories in the LCA. The main LCA is 6.01E-02 kg CO<sub>2</sub> eq/kWh for climate change, 5.04E-02 kg 1,4-DB eq/kWh for human toxicity, and 1.74E-02 kg Fe eq/kWh for mineral resource depletion. A levelized energy cost (LEnC) of 0.15 USD/kWh, a net present value (NPV) of 1,634,658.51 USD, a profitability index (PI) of 1.72, an internal rate of return (IRR) of 7.97%, and a payback period (PB) of 9.63 y are achieved for economic impact. A waste-to-zero method presents a waste ash concrete block of 7.50 kg, with a size of 39 cm × 19 cm × 7 cm, developed under the Thai Industrial Standard (TIS) 58–2533.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782324000275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new waste-to-energy-to-zero management under the energy, economic, and environmental implications. The survey data implies a total municipal solid waste (MSW) generation of 17.85 Ton/d. The proportions of combustible waste, noncombustible waste, and organic waste are 31.63%, 35.24%, and 33.13%, respectively. Combustion heat is utilized to fuel a combined cooling, heating, and power (CCHP) system. A power output is generated with a two-stage organic Rankine cycle (ORC) of 55.57 kWe, a cooling process in an absorption chiller of 91.06 kW, and a heating process in a drying room of 207.39 kW. A total energy output of 306.98 kW and an energy efficiency of 22.38% are simulated in the waste CCHP system. The solar photovoltaic (PV) rooftop system produced 2,755.62 kWh/d of power generation at a maximum efficiency of 16.28%. A waste-to-energy system has a net power output of 2,823.86 kWh/d at an overall efficiency of 18.34%. Concrete, copper, steel, and gypsum materials significantly influence all midpoint impact categories in the LCA. The main LCA is 6.01E-02 kg CO2 eq/kWh for climate change, 5.04E-02 kg 1,4-DB eq/kWh for human toxicity, and 1.74E-02 kg Fe eq/kWh for mineral resource depletion. A levelized energy cost (LEnC) of 0.15 USD/kWh, a net present value (NPV) of 1,634,658.51 USD, a profitability index (PI) of 1.72, an internal rate of return (IRR) of 7.97%, and a payback period (PB) of 9.63 y are achieved for economic impact. A waste-to-zero method presents a waste ash concrete block of 7.50 kg, with a size of 39 cm × 19 cm × 7 cm, developed under the Thai Industrial Standard (TIS) 58–2533.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信