Computational analysis of thermo-solutal Marangoni convective unsteady stagnation point flow of tetra hybrid nanofluid past rotating sphere with activation energy

Q1 Chemical Engineering
Munawar Abbas , Hawzhen Fateh M. Ameen , Jihad Younis , Nargiza Kamolova , Ebenezer Bonyah , Hafiz Muhammad Ghazi
{"title":"Computational analysis of thermo-solutal Marangoni convective unsteady stagnation point flow of tetra hybrid nanofluid past rotating sphere with activation energy","authors":"Munawar Abbas ,&nbsp;Hawzhen Fateh M. Ameen ,&nbsp;Jihad Younis ,&nbsp;Nargiza Kamolova ,&nbsp;Ebenezer Bonyah ,&nbsp;Hafiz Muhammad Ghazi","doi":"10.1016/j.ijft.2024.101025","DOIUrl":null,"url":null,"abstract":"<div><div>There are many applications for thermo-solutal Marangoni convection in science and engineering. Projectiles, thermal transportation, electrical fuel, gas turbines, nuclear power plants, renewable energy, and aeronautical engineering are just a few examples of the applications of these two ideas. Considering the aforementioned uses, the present work examines the characteristics of thermo-solutal Marangon convection on the Darcy-Forchheimer stagnation point flow of MHD tetra hybrid nanofluid around a sphere rotating with activation energy. A tetra hybrid nanofluid composed of copper (Cu), molybdenum disulfide (MOS<sub>2</sub>), titanium oxide (Ti<em>O</em><sub>2,</sub>), iron oxide (<em>Fe</em><sub>3</sub><em>O</em><sub>4</sub>), and water is used as the inappropriate fluid. Utilizing this model helps optimize energy systems such as solar collectors, increase the efficiency of chemical reactors, and improve heat and mass transfer in microelectronic cooling systems. Better performance and energy efficiency are ensured by its assistance in comprehending fluid behaviour in automotive and aerospace cooling mechanisms. Using the proper similarity variables, ordinary differential equations (ODEs) are generated from the nonlinear governing equations. A shooting method and the bvp4c method are utilized to obtain the numerical solution of the reduced boundary conditions and equations. Thermal distribution and rate of heat transfer improve but concentration distribution declines as nanoparticle volume friction rises.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"25 ","pages":"Article 101025"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724004646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

There are many applications for thermo-solutal Marangoni convection in science and engineering. Projectiles, thermal transportation, electrical fuel, gas turbines, nuclear power plants, renewable energy, and aeronautical engineering are just a few examples of the applications of these two ideas. Considering the aforementioned uses, the present work examines the characteristics of thermo-solutal Marangon convection on the Darcy-Forchheimer stagnation point flow of MHD tetra hybrid nanofluid around a sphere rotating with activation energy. A tetra hybrid nanofluid composed of copper (Cu), molybdenum disulfide (MOS2), titanium oxide (TiO2,), iron oxide (Fe3O4), and water is used as the inappropriate fluid. Utilizing this model helps optimize energy systems such as solar collectors, increase the efficiency of chemical reactors, and improve heat and mass transfer in microelectronic cooling systems. Better performance and energy efficiency are ensured by its assistance in comprehending fluid behaviour in automotive and aerospace cooling mechanisms. Using the proper similarity variables, ordinary differential equations (ODEs) are generated from the nonlinear governing equations. A shooting method and the bvp4c method are utilized to obtain the numerical solution of the reduced boundary conditions and equations. Thermal distribution and rate of heat transfer improve but concentration distribution declines as nanoparticle volume friction rises.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信