Exploring the anisotropic damage behaviour during the scratching process of SiCf/SiC composites

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Qihao Xu , Jinlong Wang , Yi-Qi Wang , Hang Gao
{"title":"Exploring the anisotropic damage behaviour during the scratching process of SiCf/SiC composites","authors":"Qihao Xu ,&nbsp;Jinlong Wang ,&nbsp;Yi-Qi Wang ,&nbsp;Hang Gao","doi":"10.1016/j.compositesa.2025.108717","DOIUrl":null,"url":null,"abstract":"<div><div>SiC<sub>f</sub>/SiC composites are ideally suited for demanding high-temperature applications, such as high thrust-weight ratio aeroengines, and accident-tolerant fuel claddings. However, their anisotropic damage behaviour causes the significant challenge in high-quality machining. To explore this difficulty, linear loading nanoindentation and scratch tests were conducted. The results indicated significant variations in mechanical property and damage resistance across different structural locations. The damage behaviour in fibre bundle region was observed to differ from matrix-rich region, depending on the fibre-related scratch direction <em>ϕ</em>. Except for <em>ϕ</em> = 0° and 90°, the two sides of scratch exhibited an asymmetric damage feature. At <em>ϕ</em> = 90°, the largest lateral damage was observed. Fibre–matrix interface debonding was crucial, accompanied by complex force fluctuations. Based on beam bending theory and fracture mechanics, a microstructure-based model was developed to explain the mechanisms of debonding and fibre fracture at different fibre orientations, showed consistency with the evaluated results.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"190 ","pages":"Article 108717"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000119","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

SiCf/SiC composites are ideally suited for demanding high-temperature applications, such as high thrust-weight ratio aeroengines, and accident-tolerant fuel claddings. However, their anisotropic damage behaviour causes the significant challenge in high-quality machining. To explore this difficulty, linear loading nanoindentation and scratch tests were conducted. The results indicated significant variations in mechanical property and damage resistance across different structural locations. The damage behaviour in fibre bundle region was observed to differ from matrix-rich region, depending on the fibre-related scratch direction ϕ. Except for ϕ = 0° and 90°, the two sides of scratch exhibited an asymmetric damage feature. At ϕ = 90°, the largest lateral damage was observed. Fibre–matrix interface debonding was crucial, accompanied by complex force fluctuations. Based on beam bending theory and fracture mechanics, a microstructure-based model was developed to explain the mechanisms of debonding and fibre fracture at different fibre orientations, showed consistency with the evaluated results.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信