Improvement of thermohydraulic performance of flow based on novel dimpled tubes on response surface methodology and Taguchi technique-fitted experiment design

Q1 Chemical Engineering
Ahmed Ramadhan Al-Obaidi , Anas Alwatban
{"title":"Improvement of thermohydraulic performance of flow based on novel dimpled tubes on response surface methodology and Taguchi technique-fitted experiment design","authors":"Ahmed Ramadhan Al-Obaidi ,&nbsp;Anas Alwatban","doi":"10.1016/j.ijft.2024.101038","DOIUrl":null,"url":null,"abstract":"<div><div>Analysis of thermal flow and the heat performance with dimple pipes under various geometric configurations are carried out in the current study. The focus of the current research work is on behavior of thermal flow characteristics, pressure, and different velocity components in heat exchanger pipes that have inner pipe wall dimples. The study employs the CFD technique to perform three-dimensional computational computations to investigate the impact of four geometrical parameters on thermo-hydraulic performance enhancement: dimple pitch, dimple diameter, dimple number, and dimple distance between dimples. Additionally, the Taguchi and Response Surface Methods in conjunction with design of experiments (DOE) methodologies are used to optimize the impact of the following factors. The utilization of dimples on inner surface of wall tube caused distinct patterns in the flow and heat performance, according to the results. Additionally, by using dimples, the area of heat performance can be increased because of the interactions that occur between the swirling flow and the dimpled wall surfaces, which enhance heat transfer performance. A thorough flow investigation between the dimples and wall pipe describes the reasons for the changes in heat transmission and pressure. Compared to smooth pipe, optimal design of dimpled pipe was improved approximately 35.8% and 36.2%, according to results of an orthogonal experiment conducted in this investigation using the computational fluid dynamic method with DOE, RSM, and TM for temperature differences and rate of heat. The results indicate that there was a high value of higher than one for the performance evaluation factor (PEF). The aforementioned findings suggest that dimple optimization, enhanced heat transfer efficiency, and the flow of hydrodynamic analysis are necessary for a variety of design applications. Difference between the present numerical and experimental data for Nu and f factours which were around 7.5 and 6.5%.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"25 ","pages":"Article 101038"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724004774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Analysis of thermal flow and the heat performance with dimple pipes under various geometric configurations are carried out in the current study. The focus of the current research work is on behavior of thermal flow characteristics, pressure, and different velocity components in heat exchanger pipes that have inner pipe wall dimples. The study employs the CFD technique to perform three-dimensional computational computations to investigate the impact of four geometrical parameters on thermo-hydraulic performance enhancement: dimple pitch, dimple diameter, dimple number, and dimple distance between dimples. Additionally, the Taguchi and Response Surface Methods in conjunction with design of experiments (DOE) methodologies are used to optimize the impact of the following factors. The utilization of dimples on inner surface of wall tube caused distinct patterns in the flow and heat performance, according to the results. Additionally, by using dimples, the area of heat performance can be increased because of the interactions that occur between the swirling flow and the dimpled wall surfaces, which enhance heat transfer performance. A thorough flow investigation between the dimples and wall pipe describes the reasons for the changes in heat transmission and pressure. Compared to smooth pipe, optimal design of dimpled pipe was improved approximately 35.8% and 36.2%, according to results of an orthogonal experiment conducted in this investigation using the computational fluid dynamic method with DOE, RSM, and TM for temperature differences and rate of heat. The results indicate that there was a high value of higher than one for the performance evaluation factor (PEF). The aforementioned findings suggest that dimple optimization, enhanced heat transfer efficiency, and the flow of hydrodynamic analysis are necessary for a variety of design applications. Difference between the present numerical and experimental data for Nu and f factours which were around 7.5 and 6.5%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信