Enhanced glucose sensing via nanoparticles-modified extended gates: A novel approach to electric double layer modulation and signal amplification in field effect transistors for improved detection sensitivity
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Enhanced glucose sensing via nanoparticles-modified extended gates: A novel approach to electric double layer modulation and signal amplification in field effect transistors for improved detection sensitivity","authors":"Sheng-Chun Hung, Yi-Hua Lee","doi":"10.1016/j.biosx.2025.100576","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative glucose sensing platform that harnesses the enhanced electrocatalytic properties of planar electric double layer (EDL) structures in conjunction with extended gate field effect transistors (EGFETs). By integrating specific nanoparticles onto the sensor surface, this platform achieves substantial improvements in glucose detection sensitivity and overall performance. The materials employed in this research include Ni nanowires combined with graphene films, CuO nanoparticles incorporated into carbon nanostructures, and gold nanoparticles affixed to ZnO nanostructures. These nanomaterials exhibit remarkable catalytic activity, while the localized electric field effect generated by the electric double layer significantly amplifies the signal, thereby enhancing sensitivity. Experimental findings reveal notable enhancements in both sensitivity and detection limits compared to conventional glucose sensors, underscoring the potential of this platform for effective glucose monitoring. Specifically, the Ni nanowire-graphene film sensor recorded a sensitivity of 3102.7 μA mM⁻<sup>1</sup> cm⁻<sup>2</sup> with a detection limit of 51 nM. The CuO nanoparticle-carbon nanostructure sensor achieved a sensitivity of 2206.25 μA mM⁻<sup>1</sup> cm⁻<sup>2</sup> and a detection limit of 39 nM, while the gold nanoparticle-ZnO nanostructure sensor demonstrated a sensitivity of 811.8 μA mM⁻<sup>1</sup> cm⁻<sup>2</sup> with a detection limit of 59 nM.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"23 ","pages":"Article 100576"},"PeriodicalIF":10.6100,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative glucose sensing platform that harnesses the enhanced electrocatalytic properties of planar electric double layer (EDL) structures in conjunction with extended gate field effect transistors (EGFETs). By integrating specific nanoparticles onto the sensor surface, this platform achieves substantial improvements in glucose detection sensitivity and overall performance. The materials employed in this research include Ni nanowires combined with graphene films, CuO nanoparticles incorporated into carbon nanostructures, and gold nanoparticles affixed to ZnO nanostructures. These nanomaterials exhibit remarkable catalytic activity, while the localized electric field effect generated by the electric double layer significantly amplifies the signal, thereby enhancing sensitivity. Experimental findings reveal notable enhancements in both sensitivity and detection limits compared to conventional glucose sensors, underscoring the potential of this platform for effective glucose monitoring. Specifically, the Ni nanowire-graphene film sensor recorded a sensitivity of 3102.7 μA mM⁻1 cm⁻2 with a detection limit of 51 nM. The CuO nanoparticle-carbon nanostructure sensor achieved a sensitivity of 2206.25 μA mM⁻1 cm⁻2 and a detection limit of 39 nM, while the gold nanoparticle-ZnO nanostructure sensor demonstrated a sensitivity of 811.8 μA mM⁻1 cm⁻2 with a detection limit of 59 nM.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.