The hydrological hazard in artificially-drained mining and post-mining areas–A significant environmental aspect requiring systemic management

IF 7.5 3区 工程技术 Q1 WATER RESOURCES
Dariusz Ignacy
{"title":"The hydrological hazard in artificially-drained mining and post-mining areas–A significant environmental aspect requiring systemic management","authors":"Dariusz Ignacy","doi":"10.1016/j.wri.2024.100275","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes a case study of a highly urbanized artificially-drained mine subsidence area massively impacted by mining. Within this area, the surface has subsided over 40 m and the area threatened by flooding is 18 times larger than the observable inundation today. This surface relief disturbance and hydrological hazard is shown using the author's innovative concepts in the form of relative elevation models and four hydrological hazard frameworks. This paper contains analyses supporting the main thesis that in highly transformed and artificially-drained mining and post-mining areas, the hydrological hazard should be classified as a significant environmental aspect requiring systemic management. It outlines in detail the above premise by describing the inter-related mining and non-mining processes causing changes to the hydrological hazard leading to the subsequent complexity of mitigation measures. The introduction of relative elevation models and newly-defined hydrological hazard frameworks are projected onto a site-specific hydromorphologic map. This map forms the hydrological basis for identifying and dimensioning existing flood-related geohazards. The innovative contribution is the ability to incorporate time-related data to assess past and future hydrological hazards. This knowledge makes it possible to simplify flood-related geohazard mitigation. Additionally, it affords policy-makers a range of options regarding future spatial planning to optimize land-use according to societal will. To date, environmental management systems do not sufficiently take into account the mining-induced hydrological hazard in mine subsidence areas. The main goal of this paper is to show that the existing gap in management capability of the hydrological hazard and flood-related geohazards and risks can be resolved by the author's novel site-specific decision support tools.</div></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"33 ","pages":"Article 100275"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371724000374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a case study of a highly urbanized artificially-drained mine subsidence area massively impacted by mining. Within this area, the surface has subsided over 40 m and the area threatened by flooding is 18 times larger than the observable inundation today. This surface relief disturbance and hydrological hazard is shown using the author's innovative concepts in the form of relative elevation models and four hydrological hazard frameworks. This paper contains analyses supporting the main thesis that in highly transformed and artificially-drained mining and post-mining areas, the hydrological hazard should be classified as a significant environmental aspect requiring systemic management. It outlines in detail the above premise by describing the inter-related mining and non-mining processes causing changes to the hydrological hazard leading to the subsequent complexity of mitigation measures. The introduction of relative elevation models and newly-defined hydrological hazard frameworks are projected onto a site-specific hydromorphologic map. This map forms the hydrological basis for identifying and dimensioning existing flood-related geohazards. The innovative contribution is the ability to incorporate time-related data to assess past and future hydrological hazards. This knowledge makes it possible to simplify flood-related geohazard mitigation. Additionally, it affords policy-makers a range of options regarding future spatial planning to optimize land-use according to societal will. To date, environmental management systems do not sufficiently take into account the mining-induced hydrological hazard in mine subsidence areas. The main goal of this paper is to show that the existing gap in management capability of the hydrological hazard and flood-related geohazards and risks can be resolved by the author's novel site-specific decision support tools.
人工排水矿区和矿区后的水文危害是一个需要系统管理的重要环境问题
本文以某高度城市化的人工排水矿山沉陷区为例进行了研究。在这个区域内,地表已经下沉了40多米,受到洪水威胁的面积是今天可观测到的淹没面积的18倍。这种地表起伏扰动和水文灾害是用作者的创新概念,以相对高程模型和四个水文灾害框架的形式表现出来的。本文包含了支持主要论点的分析,即在高度改造和人工排水的矿区和矿区后,水文危害应被列为需要系统管理的重要环境方面。它通过描述引起水文危害变化的相互关联的采矿和非采矿过程,从而导致后续缓解措施的复杂性,详细概述了上述前提。引入的相对高程模型和新定义的水文灾害框架被投射到特定地点的水文形态图上。这张地图构成了识别和确定现有与洪水有关的地质灾害的水文基础。创新的贡献是能够将与时间相关的数据纳入评估过去和未来的水文灾害。这方面的知识使减轻与洪水有关的地质灾害成为可能。此外,它还为决策者提供了一系列关于未来空间规划的选择,以根据社会意愿优化土地利用。迄今为止,环境管理系统没有充分考虑到采矿引起的矿井塌陷区水文危害。本文的主要目标是表明,作者的新型特定地点决策支持工具可以解决水文灾害和洪水相关地质灾害和风险管理能力的现有差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources and Industry
Water Resources and Industry Social Sciences-Geography, Planning and Development
CiteScore
8.10
自引率
5.90%
发文量
23
审稿时长
75 days
期刊介绍: Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信