Topology and monoid representations II: Left regular bands of groups and Hsiao's monoid of ordered G-partitions

IF 0.8 2区 数学 Q2 MATHEMATICS
Benjamin Steinberg
{"title":"Topology and monoid representations II: Left regular bands of groups and Hsiao's monoid of ordered G-partitions","authors":"Benjamin Steinberg","doi":"10.1016/j.jalgebra.2024.10.041","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this paper is to use topological methods to compute Ext between irreducible representations of von Neumann regular monoids in which Green's <span><math><mi>L</mi></math></span>- and <span><math><mi>J</mi></math></span>-relations coincide (e.g., left regular bands). Our results subsume those of Margolis et al. (2015) <span><span>[22]</span></span>.</div><div>Applications include computing Ext between arbitrary simple modules and computing a quiver presentation for the algebra of Hsiao's monoid of ordered <em>G</em>-partitions (connected to the Mantaci-Reutenauer descent algebra for the wreath product <span><math><mi>G</mi><mo>≀</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>). We show that this algebra is Koszul, compute its Koszul dual and compute minimal projective resolutions of all the simple modules using topology. More generally, these results work for CW left regular bands of abelian groups. These results generalize the results of Margolis et al. (2021) <span><span>[23]</span></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 679-710"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932400601X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to use topological methods to compute Ext between irreducible representations of von Neumann regular monoids in which Green's L- and J-relations coincide (e.g., left regular bands). Our results subsume those of Margolis et al. (2015) [22].
Applications include computing Ext between arbitrary simple modules and computing a quiver presentation for the algebra of Hsiao's monoid of ordered G-partitions (connected to the Mantaci-Reutenauer descent algebra for the wreath product GSn). We show that this algebra is Koszul, compute its Koszul dual and compute minimal projective resolutions of all the simple modules using topology. More generally, these results work for CW left regular bands of abelian groups. These results generalize the results of Margolis et al. (2021) [23].
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信