Thermal and Flow Dynamics of Magnetohydrodynamic Burgers' Fluid Induced by a Stretching Cylinder with Internal Heat Generation and Absorption

Q1 Chemical Engineering
Fateh Mebarek-Oudina , G. Dharmaiah , J.L. Rama Prasad , H. Vaidya , Manda Aruna Kumari
{"title":"Thermal and Flow Dynamics of Magnetohydrodynamic Burgers' Fluid Induced by a Stretching Cylinder with Internal Heat Generation and Absorption","authors":"Fateh Mebarek-Oudina ,&nbsp;G. Dharmaiah ,&nbsp;J.L. Rama Prasad ,&nbsp;H. Vaidya ,&nbsp;Manda Aruna Kumari","doi":"10.1016/j.ijft.2024.100986","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the flow dynamics of magnetohydrodynamic Burgers' fluid induced by a stretching cylinder, emphasizing the effects of internal heat generation and absorption. A temperature-dependent heat source is integrated to examine the characteristics of thermal energy transfer within the system. By applying boundary layer theory, we transform the governing partial differential equations into a standard system of ordinary differential equations through similarity transformations. The BVP4C method is utilized to accurately solve the resulting equations for velocity and temperature profiles. Graphical representations illustrate the influence of various physical parameters on both thermal and flow profiles, supported by comprehensive analytical interpretations. To validate our findings, a comparison with existing literature is performed, confirming the consistency and significance of our results. This research offers valuable insights into the thermal and fluid behaviors of Burgers' fluids, with promising applications in the development of advanced biomedical devices.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"25 ","pages":"Article 100986"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724004257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the flow dynamics of magnetohydrodynamic Burgers' fluid induced by a stretching cylinder, emphasizing the effects of internal heat generation and absorption. A temperature-dependent heat source is integrated to examine the characteristics of thermal energy transfer within the system. By applying boundary layer theory, we transform the governing partial differential equations into a standard system of ordinary differential equations through similarity transformations. The BVP4C method is utilized to accurately solve the resulting equations for velocity and temperature profiles. Graphical representations illustrate the influence of various physical parameters on both thermal and flow profiles, supported by comprehensive analytical interpretations. To validate our findings, a comparison with existing literature is performed, confirming the consistency and significance of our results. This research offers valuable insights into the thermal and fluid behaviors of Burgers' fluids, with promising applications in the development of advanced biomedical devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信