Yan Hu , Chuming Sheng , Zhejia Zhang , Qicheng Sun , Jinshu Zhang , Saifei Gou , Yuxuan Zhu , Xiangqi Dong , Mingrui Ao , Yuchen Tian , Xinliu He , Haojie Chen , Die Wang , Yufei Song , Jieya Shang , Xinyu Wang , Yue Zhang , Jingjie Zhou , Xu Wang , Yi Wang , Wenzhong Bao
{"title":"First demonstration of monolithic CMOS based on 4-inch three-layer MoTe2","authors":"Yan Hu , Chuming Sheng , Zhejia Zhang , Qicheng Sun , Jinshu Zhang , Saifei Gou , Yuxuan Zhu , Xiangqi Dong , Mingrui Ao , Yuchen Tian , Xinliu He , Haojie Chen , Die Wang , Yufei Song , Jieya Shang , Xinyu Wang , Yue Zhang , Jingjie Zhou , Xu Wang , Yi Wang , Wenzhong Bao","doi":"10.1016/j.mser.2025.100938","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, two-dimensional (2D) semiconductors, which possess atomic-scale thickness and superior electrostatic control, have been identified as the most promising channel material candidates for sub-1 nm technology nodes. Most researches on 2D materials complementary metal oxide semiconductors (2D CMOS) have encountered several challenges, including the lack of effective doping approaches and incompatibility with Si-CMOS processes, which have hindered the further development of 2D semiconductor-based integrated circuits (2D-ICs). Here, we present the fabrication of 4-inch wafer-scale MoTe<sub>2</sub> CMOS inverter arrays, based on a top-gate transistor architecture for MoTe<sub>2</sub> film with three-layer thickness. Following the co-optimization of contact and top-gate processes, the MoTe<sub>2</sub> CMOS exhibited a voltage gain of approximately 35. This work demonstrates the feasibility of fabricating wafer-scale CMOS 2D-ICs.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"163 ","pages":"Article 100938"},"PeriodicalIF":31.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000154","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, two-dimensional (2D) semiconductors, which possess atomic-scale thickness and superior electrostatic control, have been identified as the most promising channel material candidates for sub-1 nm technology nodes. Most researches on 2D materials complementary metal oxide semiconductors (2D CMOS) have encountered several challenges, including the lack of effective doping approaches and incompatibility with Si-CMOS processes, which have hindered the further development of 2D semiconductor-based integrated circuits (2D-ICs). Here, we present the fabrication of 4-inch wafer-scale MoTe2 CMOS inverter arrays, based on a top-gate transistor architecture for MoTe2 film with three-layer thickness. Following the co-optimization of contact and top-gate processes, the MoTe2 CMOS exhibited a voltage gain of approximately 35. This work demonstrates the feasibility of fabricating wafer-scale CMOS 2D-ICs.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.