Electroelastically coupled stiffness matrix method for phononic crystals with piezoelectric defects and its applications to filters, sensors, and energy harvesters

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Soo-Ho Jo
{"title":"Electroelastically coupled stiffness matrix method for phononic crystals with piezoelectric defects and its applications to filters, sensors, and energy harvesters","authors":"Soo-Ho Jo","doi":"10.1016/j.mechmat.2025.105262","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive analytical framework for one-dimensional phononic crystals (PnCs) integrated with piezoelectric defects, leveraging an electroelastically coupled stiffness matrix under longitudinal wave propagation. This matrix effectively captures the mechanical coupling between defects and piezoelectric devices, as well as the piezoelectric coupling within the devices, providing a robust foundation for predicting key behaviors such as band structures, defect mode shapes, and frequency responses. The stiffness matrix method employed in this study overcomes the numerical instabilities inherent in traditional transfer matrix approaches, thereby enhancing the reliability and precision of the framework. The versatility of the proposed framework is evident in its application across diverse engineering domains, including tunable bandpass filters, high-sensitivity ultrasonic sensors, and energy harvesters. The accuracy of the model is validated through finite-element simulations, which demonstrates significantly reduced computation times. To encourage further research and practical implementation, the study provides MATLAB codes. This study establishes the foundation for extending the framework to bending waves, miniaturized PnCs, and oblique wave propagation scenarios.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"203 ","pages":"Article 105262"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663625000249","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive analytical framework for one-dimensional phononic crystals (PnCs) integrated with piezoelectric defects, leveraging an electroelastically coupled stiffness matrix under longitudinal wave propagation. This matrix effectively captures the mechanical coupling between defects and piezoelectric devices, as well as the piezoelectric coupling within the devices, providing a robust foundation for predicting key behaviors such as band structures, defect mode shapes, and frequency responses. The stiffness matrix method employed in this study overcomes the numerical instabilities inherent in traditional transfer matrix approaches, thereby enhancing the reliability and precision of the framework. The versatility of the proposed framework is evident in its application across diverse engineering domains, including tunable bandpass filters, high-sensitivity ultrasonic sensors, and energy harvesters. The accuracy of the model is validated through finite-element simulations, which demonstrates significantly reduced computation times. To encourage further research and practical implementation, the study provides MATLAB codes. This study establishes the foundation for extending the framework to bending waves, miniaturized PnCs, and oblique wave propagation scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信