An interpretable imbalance ensemble classification method for readmission risk assessment incorporating multi-view perturbation and SHAP analysis

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaoze Cui , Ruize Gao , Junwei Kuang , Liang Yang , Huaxin Qiu , Xiaowen Wei
{"title":"An interpretable imbalance ensemble classification method for readmission risk assessment incorporating multi-view perturbation and SHAP analysis","authors":"Shaoze Cui ,&nbsp;Ruize Gao ,&nbsp;Junwei Kuang ,&nbsp;Liang Yang ,&nbsp;Huaxin Qiu ,&nbsp;Xiaowen Wei","doi":"10.1016/j.dss.2025.114404","DOIUrl":null,"url":null,"abstract":"<div><div>In the domain of medical services, patients are frequently readmitted shortly after discharge due to inadequate discharge planning or relapses of their illnesses. Such occurrences not only deplete valuable medical resources but also compromise patient satisfaction with the medical care they receive. To address this issue, we propose an interpretable imbalance ensemble classification method incorporating multi-view perturbation to evaluate the risk of patient readmission. Our study introduces a novel multi-view perturbation technique to bolster the model's generalization capabilities. Furthermore, we propose a more robust ensemble strategy based on Evidential Reasoning (EVR) rules, which enhances the stability of the ensemble learning model's fusion outcomes. Additionally, recognizing the impact of sensitive parameters on model performance, we present a parameter optimization approach utilizing the Differential Evolution (DE) algorithm, which balances model predictive accuracy and computational efficiency within the fitness function. Empirical results using real-world medical data indicate that our proposed method accurately identifies patients at high risk of readmission and surpasses current state-of-the-art methods in risk assessment.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"190 ","pages":"Article 114404"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000053","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the domain of medical services, patients are frequently readmitted shortly after discharge due to inadequate discharge planning or relapses of their illnesses. Such occurrences not only deplete valuable medical resources but also compromise patient satisfaction with the medical care they receive. To address this issue, we propose an interpretable imbalance ensemble classification method incorporating multi-view perturbation to evaluate the risk of patient readmission. Our study introduces a novel multi-view perturbation technique to bolster the model's generalization capabilities. Furthermore, we propose a more robust ensemble strategy based on Evidential Reasoning (EVR) rules, which enhances the stability of the ensemble learning model's fusion outcomes. Additionally, recognizing the impact of sensitive parameters on model performance, we present a parameter optimization approach utilizing the Differential Evolution (DE) algorithm, which balances model predictive accuracy and computational efficiency within the fitness function. Empirical results using real-world medical data indicate that our proposed method accurately identifies patients at high risk of readmission and surpasses current state-of-the-art methods in risk assessment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信