Panoramic sales insight: Using multimodal fusion to improve the effectiveness of flash sales

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haoran Wang , Zhen-Song Chen , Mingjie Fang , Yilong Wang , Feng Liu
{"title":"Panoramic sales insight: Using multimodal fusion to improve the effectiveness of flash sales","authors":"Haoran Wang ,&nbsp;Zhen-Song Chen ,&nbsp;Mingjie Fang ,&nbsp;Yilong Wang ,&nbsp;Feng Liu","doi":"10.1016/j.dss.2025.114401","DOIUrl":null,"url":null,"abstract":"<div><div>Flash sales are a widely adopted e-commerce marketing strategy that operate over a brief period, offering limited-time discounts, special promotions, or clearance items to create a sense of urgency and promote rapid sales. This study proposes panoramic sales insight (PSI), a multimodal revenue forecasting framework designed to improve the accuracy of revenue predictions for flash sales. Using historical flash sales data from the fast fashion retailer Shein, the proposed PSI framework integrates both structured and unstructured data, utilizing a text–image fusion module to fuse features from product images and text descriptions and a deep neural network to forecast revenue. The text features are extracted using bidirectional encoder representations from transformers (BERT), the product image features are extracted using a vision transformer (ViT), and review keyword extraction is conducted using Fumeus. Multimodal fusion then integrates these features to deliver accurate revenue forecasting. Controlled experiments evaluate the performance of each module within the PSI framework, while ablation analysis confirms the robustness of PSI. This study provides valuable insights for managers, enabling more accurate revenue forecasting and improving the effectiveness of flash sales.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"190 ","pages":"Article 114401"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000028","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Flash sales are a widely adopted e-commerce marketing strategy that operate over a brief period, offering limited-time discounts, special promotions, or clearance items to create a sense of urgency and promote rapid sales. This study proposes panoramic sales insight (PSI), a multimodal revenue forecasting framework designed to improve the accuracy of revenue predictions for flash sales. Using historical flash sales data from the fast fashion retailer Shein, the proposed PSI framework integrates both structured and unstructured data, utilizing a text–image fusion module to fuse features from product images and text descriptions and a deep neural network to forecast revenue. The text features are extracted using bidirectional encoder representations from transformers (BERT), the product image features are extracted using a vision transformer (ViT), and review keyword extraction is conducted using Fumeus. Multimodal fusion then integrates these features to deliver accurate revenue forecasting. Controlled experiments evaluate the performance of each module within the PSI framework, while ablation analysis confirms the robustness of PSI. This study provides valuable insights for managers, enabling more accurate revenue forecasting and improving the effectiveness of flash sales.
全景销售洞察:利用多模态融合提高闪购效果
闪购是一种被广泛采用的电子商务营销策略,它在短时间内运作,提供限时折扣、特别促销或清仓商品,以创造一种紧迫感,促进快速销售。本研究提出了全景销售洞察(PSI),这是一个多模式的收入预测框架,旨在提高对闪购收入预测的准确性。利用快时尚零售商Shein的历史闪购数据,所提出的PSI框架集成了结构化和非结构化数据,利用文本图像融合模块融合产品图像和文本描述的特征,并利用深度神经网络预测收入。文本特征使用双向编码器表示从变压器(BERT)中提取,产品图像特征使用视觉变压器(ViT)提取,并使用Fumeus进行评论关键词提取。然后,多模式融合将这些功能集成在一起,以提供准确的收入预测。控制实验评估了PSI框架内每个模块的性能,而烧蚀分析证实了PSI的鲁棒性。本研究为管理者提供了有价值的见解,使其能够更准确地预测收入,提高闪购的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信