Decision support through deep reinforcement learning for maximizing a courier's monetary gain in a meal delivery environment

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weiwen Zhou, Hossein Fotouhi, Elise Miller-Hooks
{"title":"Decision support through deep reinforcement learning for maximizing a courier's monetary gain in a meal delivery environment","authors":"Weiwen Zhou,&nbsp;Hossein Fotouhi,&nbsp;Elise Miller-Hooks","doi":"10.1016/j.dss.2024.114388","DOIUrl":null,"url":null,"abstract":"<div><div>Meal delivery is a fast-growing industry supported by couriers participating in the gig economy. This paper takes a single courier's perspective and provides decision support for an individual courier who works at will in repositioning between jobs and order-taking to optimize her profit during a work period. A hybrid discrete-time, discrete-event simulation environment was developed based on data from a real-world meal delivery environment to replicate daily operations. The single courier's repositioning and order-taking decision problem is formulated as a Markov decision process. Two classes of deep reinforcement learning (DRL) methodologies, value-based and policy-gradient algorithms, were implemented to determine the courier's best decisions to take as the courier's work shift progresses. In numerical experiments, the best optimal policy resulting from the DRL algorithms is shown to outperform all considered static policies in all demand environments. Insights from studying the decisions suggested by the best of the DRL methods were employed to create a promising static policy by generating decision trees for relocation and order-taking. The results indicate that as couriers find more intelligent strategies for maximizing their rewards, the meal delivery platform will have even greater need to incentivize couriers to fulfill less attractive orders, especially in surge periods. Finally, the impact of a multi-courier DRL environment, where multiple couriers have the advantage of the DRL strategy, was studied. For this purpose, a multi-agent DRL was implemented and numerical experiments were conducted to investigate the tradeoffs between individual courier gains and system-level performance. Findings from this multi-agent extension show the negative impacts of selfish behavior on not only the system, but the couriers themselves.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"190 ","pages":"Article 114388"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624002215","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Meal delivery is a fast-growing industry supported by couriers participating in the gig economy. This paper takes a single courier's perspective and provides decision support for an individual courier who works at will in repositioning between jobs and order-taking to optimize her profit during a work period. A hybrid discrete-time, discrete-event simulation environment was developed based on data from a real-world meal delivery environment to replicate daily operations. The single courier's repositioning and order-taking decision problem is formulated as a Markov decision process. Two classes of deep reinforcement learning (DRL) methodologies, value-based and policy-gradient algorithms, were implemented to determine the courier's best decisions to take as the courier's work shift progresses. In numerical experiments, the best optimal policy resulting from the DRL algorithms is shown to outperform all considered static policies in all demand environments. Insights from studying the decisions suggested by the best of the DRL methods were employed to create a promising static policy by generating decision trees for relocation and order-taking. The results indicate that as couriers find more intelligent strategies for maximizing their rewards, the meal delivery platform will have even greater need to incentivize couriers to fulfill less attractive orders, especially in surge periods. Finally, the impact of a multi-courier DRL environment, where multiple couriers have the advantage of the DRL strategy, was studied. For this purpose, a multi-agent DRL was implemented and numerical experiments were conducted to investigate the tradeoffs between individual courier gains and system-level performance. Findings from this multi-agent extension show the negative impacts of selfish behavior on not only the system, but the couriers themselves.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信