Xiaoli Zhu , Zhixin Shi , Guosheng Song , Yuehuan Li , Haigang Wang , Raffaella Ocone , Zhenbo Wang
{"title":"Impact of pressure on gas-solid hydrodynamics of Geldart B and D particles in a pressurized bubbling fluidized bed: A CFD-DEM study","authors":"Xiaoli Zhu , Zhixin Shi , Guosheng Song , Yuehuan Li , Haigang Wang , Raffaella Ocone , Zhenbo Wang","doi":"10.1016/j.partic.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>Pressurized fluidized beds have gained considerable interest in industrial applications due to their superior performance and efficiency compared to atmospheric fluidized beds. However, the mechanisms through which pressure influences the hydrodynamic behavior of different particle types remain insufficiently explored, hindering the scale-up, optimization, and broader adoption of this technology. To address this gap, CFD-DEM simulations were performed on a pseudo-2D pressurized bubbling fluidized bed using Geldart B and D particles. The effects of pressure, particle size, and initial bed height on key flow characteristics, including minimum fluidization velocity, particle dynamics (i.e., particle velocity and volume fraction distribution), and bubble behavior (i.e., bubble diameter, aspect ratio, density) were comprehensively examined. Results showed that the minimum fluidization velocity decreases with increasing pressure and increases with particle size, with greater sensitivity at lower pressures. Higher pressures lead to smaller bubble diameters, higher bubble aspect ratios, and denser bubble populations, resulting in concentrated particle distribution in the lower bed and more uniform radial dispersion. In contrast, larger particles create fewer, larger bubbles or slugs, and increase the overall bed height. These high-fidelity simulations offer valuable insights for optimizing the performance of pressurized fluidized beds in industrial processes.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 328-340"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002414","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pressurized fluidized beds have gained considerable interest in industrial applications due to their superior performance and efficiency compared to atmospheric fluidized beds. However, the mechanisms through which pressure influences the hydrodynamic behavior of different particle types remain insufficiently explored, hindering the scale-up, optimization, and broader adoption of this technology. To address this gap, CFD-DEM simulations were performed on a pseudo-2D pressurized bubbling fluidized bed using Geldart B and D particles. The effects of pressure, particle size, and initial bed height on key flow characteristics, including minimum fluidization velocity, particle dynamics (i.e., particle velocity and volume fraction distribution), and bubble behavior (i.e., bubble diameter, aspect ratio, density) were comprehensively examined. Results showed that the minimum fluidization velocity decreases with increasing pressure and increases with particle size, with greater sensitivity at lower pressures. Higher pressures lead to smaller bubble diameters, higher bubble aspect ratios, and denser bubble populations, resulting in concentrated particle distribution in the lower bed and more uniform radial dispersion. In contrast, larger particles create fewer, larger bubbles or slugs, and increase the overall bed height. These high-fidelity simulations offer valuable insights for optimizing the performance of pressurized fluidized beds in industrial processes.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.