Xiaohan Guo , Fei Gao , Xuehui Xu , Jianbo Zhao , Yinghou Li , Guanghui Chen , Pan Zhang
{"title":"Influence of internal components on gas-solid flow characteristics in fluidized bed reactor for organic silicon monomer synthesis","authors":"Xiaohan Guo , Fei Gao , Xuehui Xu , Jianbo Zhao , Yinghou Li , Guanghui Chen , Pan Zhang","doi":"10.1016/j.partic.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>Internal components play a crucial role in the synthesis of organic silicon monomer in gas-solid fluidized bed reactors (FBRs). Finger-tube (F-tube) and U-tube components are commonly utilized to control the temperature and ensure its homogeneity in FBRs, thereby guaranteeing a high selectivity of the target product. The main objective of this work is to better understand the influence of F-tube and U-tube on the hydrodynamics in FBRs. Computational fluid dynamics (CFD) combined with the particle image velocimetry (PIV) technique were employed to explore the flow characteristics. The numerical data were validated against the particle velocity using an image processing technique. The results revealed that the F-tube increases the bed voidage by 3.2% and reduces the pressure drop by 13.0%. While the U-tube increases the bed voidage by 2.1% and reduces the pressure drop by 11.2%. These internals improve fluidization by ensuring even particle distribution and enhancing intra-particle circulation compared to reactors without internals.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 294-311"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002372","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Internal components play a crucial role in the synthesis of organic silicon monomer in gas-solid fluidized bed reactors (FBRs). Finger-tube (F-tube) and U-tube components are commonly utilized to control the temperature and ensure its homogeneity in FBRs, thereby guaranteeing a high selectivity of the target product. The main objective of this work is to better understand the influence of F-tube and U-tube on the hydrodynamics in FBRs. Computational fluid dynamics (CFD) combined with the particle image velocimetry (PIV) technique were employed to explore the flow characteristics. The numerical data were validated against the particle velocity using an image processing technique. The results revealed that the F-tube increases the bed voidage by 3.2% and reduces the pressure drop by 13.0%. While the U-tube increases the bed voidage by 2.1% and reduces the pressure drop by 11.2%. These internals improve fluidization by ensuring even particle distribution and enhancing intra-particle circulation compared to reactors without internals.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.