Sijia Li , Lingtong Yan , Heyang Sun , Xiangqian Feng , Li Li
{"title":"Geant4 simulation of electron beam penetration behavior in textile artifacts matrix","authors":"Sijia Li , Lingtong Yan , Heyang Sun , Xiangqian Feng , Li Li","doi":"10.1016/j.nimb.2024.165603","DOIUrl":null,"url":null,"abstract":"<div><div>Textile relics are susceptible to microbial infestation, making sterilization imperative. Electron beam irradiation offers an eco-friendly solution. In practical operations, work distance of electron beam source, irradiation dose, and electron energy all influence sterilization efficacy and the integrity of artifact matrix. By utilizing Geant4 simulations, we studied the interaction between electron beams and the matrix of textiles (protein and cellulose) under different irradiation conditions. For low-energy electron beams, the irradiation distance in a nitrogen atmosphere significantly affects the energy deposition rate with a constant matrix thickness. When the energy is below 1 MeV, both the electron energy and the work distance notably influence the energy deposition rate of the beam. As the energy increases beyond 1 MeV, this influence becomes less significant. Additionally, the depth of 99% energy deposition is less than 1 mm for protein at electron energies below 0.4 MeV and for cellulose below 0.45 MeV.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"560 ","pages":"Article 165603"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X24003732","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Textile relics are susceptible to microbial infestation, making sterilization imperative. Electron beam irradiation offers an eco-friendly solution. In practical operations, work distance of electron beam source, irradiation dose, and electron energy all influence sterilization efficacy and the integrity of artifact matrix. By utilizing Geant4 simulations, we studied the interaction between electron beams and the matrix of textiles (protein and cellulose) under different irradiation conditions. For low-energy electron beams, the irradiation distance in a nitrogen atmosphere significantly affects the energy deposition rate with a constant matrix thickness. When the energy is below 1 MeV, both the electron energy and the work distance notably influence the energy deposition rate of the beam. As the energy increases beyond 1 MeV, this influence becomes less significant. Additionally, the depth of 99% energy deposition is less than 1 mm for protein at electron energies below 0.4 MeV and for cellulose below 0.45 MeV.
期刊介绍:
Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.