Hang Zang, Heng Yu, Tao Wang, Fang Liu, Chuanhao Chen, Pingan Zhou, Tan Shi, Huan He, Wenbo Liu, Chaohui He
{"title":"Influence of implantation and annealing temperatures on the irradiation damage in He2+ ion implanted 6H-SiC","authors":"Hang Zang, Heng Yu, Tao Wang, Fang Liu, Chuanhao Chen, Pingan Zhou, Tan Shi, Huan He, Wenbo Liu, Chaohui He","doi":"10.1016/j.nimb.2025.165611","DOIUrl":null,"url":null,"abstract":"<div><div>Single crystal 6H-SiC samples were implanted with He<sup>2+</sup> ions to 5 × 10<sup>16</sup> cm<sup>−2</sup> at 400 °C and 750 °C, and the sample implanted at 400 °C was subsequently annealed at 750 °C for 3 h in vacuum. These samples were characterized using X-ray diffraction, Raman spectroscopy, UV–Visible spectrophotometry and transmission electron microscopy. The results showed that the lattice expansion, level of disorder and defect concentrations in the He-implanted 6H-SiC has decreased with increasing implantation temperature at the same dose. There was a reduced irradiation effect in the 6H-SiC irradiated at 400 °C and subsequently annealed at 750 °C compared to the sample solely irradiated at 750 °C to the same dose. This behavior was attributed to more stable defect clusters and enhanced He trapping at defects in the latter sample. Possible He bubble effects cannot be excluded. In addition, the temperature effect on defect recovery in the dynamic annealing during irradiation and post-irradiation annealing was discussed.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"560 ","pages":"Article 165611"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X25000011","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Single crystal 6H-SiC samples were implanted with He2+ ions to 5 × 1016 cm−2 at 400 °C and 750 °C, and the sample implanted at 400 °C was subsequently annealed at 750 °C for 3 h in vacuum. These samples were characterized using X-ray diffraction, Raman spectroscopy, UV–Visible spectrophotometry and transmission electron microscopy. The results showed that the lattice expansion, level of disorder and defect concentrations in the He-implanted 6H-SiC has decreased with increasing implantation temperature at the same dose. There was a reduced irradiation effect in the 6H-SiC irradiated at 400 °C and subsequently annealed at 750 °C compared to the sample solely irradiated at 750 °C to the same dose. This behavior was attributed to more stable defect clusters and enhanced He trapping at defects in the latter sample. Possible He bubble effects cannot be excluded. In addition, the temperature effect on defect recovery in the dynamic annealing during irradiation and post-irradiation annealing was discussed.
期刊介绍:
Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.