A comparative study of the sensitivity of an ocean model outputs to atmospheric forcing: ERA-Interim vs. ERA5 for Adriatic Sea Ocean modelling

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Javad Babagolimatikolaei
{"title":"A comparative study of the sensitivity of an ocean model outputs to atmospheric forcing: ERA-Interim vs. ERA5 for Adriatic Sea Ocean modelling","authors":"Javad Babagolimatikolaei","doi":"10.1016/j.dynatmoce.2024.101525","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in atmospheric data have the potential to improve the accuracy of ocean modeling, as these models rely heavily on atmospheric parameters as key forcing inputs. One such dataset is the ECMWF reanalysis, with ERA5 being the latest version, succeeding ERA-Interim (ERA-I or ERAI). However, limited research has explored whether ERA5 improves ocean model accuracy compared to ERA-I. We use the ROMS model on the Adriatic Sea under two atmospheric forcing scenarios: ERA-I and ERA5. Results show that ERA5 calculates higher temperature and salinity values than ERA-I. ERA5 shows better alignment with satellite and Mediterranean reanalysis data than ERA-I. For temperature, ERA5 has a higher bias range (–2.29℃ to 0.83℃) compared to ERA-I (–2.34℃ to 0.80℃) and achieves a lower minimum bias, particularly in summer (0.02℃). Against Mediterranean reanalysis data, ERA5’s temperature bias range (–2.06℃ to 1.54℃) is lower range than ERA-I’s (–3.14℃ to 1.51℃). For salinity, ERA5 also has a smaller bias range (–0.02 PSU to 0.27 PSU) and achieves zero bias in spring, indicating a more accurate seasonal alignment than ERA-I. The warmer water temperatures in ERA5 are attributed to higher values of atmospheric parameters such as shortwave radiation flux, sensible heat flux, and air temperature, while, increased salinity is linked to more negative latent heat flux up to 10 W/m<sup>2</sup>, longwave radiation up to 5 W/m<sup>2</sup>, and higher wind speeds. These factors collectively lead to improved ocean modeling performance in ERA5.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"109 ","pages":"Article 101525"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026524000940","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in atmospheric data have the potential to improve the accuracy of ocean modeling, as these models rely heavily on atmospheric parameters as key forcing inputs. One such dataset is the ECMWF reanalysis, with ERA5 being the latest version, succeeding ERA-Interim (ERA-I or ERAI). However, limited research has explored whether ERA5 improves ocean model accuracy compared to ERA-I. We use the ROMS model on the Adriatic Sea under two atmospheric forcing scenarios: ERA-I and ERA5. Results show that ERA5 calculates higher temperature and salinity values than ERA-I. ERA5 shows better alignment with satellite and Mediterranean reanalysis data than ERA-I. For temperature, ERA5 has a higher bias range (–2.29℃ to 0.83℃) compared to ERA-I (–2.34℃ to 0.80℃) and achieves a lower minimum bias, particularly in summer (0.02℃). Against Mediterranean reanalysis data, ERA5’s temperature bias range (–2.06℃ to 1.54℃) is lower range than ERA-I’s (–3.14℃ to 1.51℃). For salinity, ERA5 also has a smaller bias range (–0.02 PSU to 0.27 PSU) and achieves zero bias in spring, indicating a more accurate seasonal alignment than ERA-I. The warmer water temperatures in ERA5 are attributed to higher values of atmospheric parameters such as shortwave radiation flux, sensible heat flux, and air temperature, while, increased salinity is linked to more negative latent heat flux up to 10 W/m2, longwave radiation up to 5 W/m2, and higher wind speeds. These factors collectively lead to improved ocean modeling performance in ERA5.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信