{"title":"Sodium Alginate-chitosan-starch based glue formulation for sealing biopolymer films","authors":"Sazzadur Rahman , Achyut Konwar , Shalini Gurumayam , Jagat Chandra Borah , Devasish Chowdhury","doi":"10.1016/j.nxmate.2025.100507","DOIUrl":null,"url":null,"abstract":"<div><div>Biopolymers are potential materials that will eventually replace petroleum-based polymers in various applications, including packaging applications. One of the systems that will be pre-requisitely required is the sealing of biopolymer. Conventional sealing techniques, viz. heat sealing and chemical adhesive, are not suitable for sealing biopolymers. In this work, we have demonstrated the formulation of biopolymer-based glue, which is effective in sealing biopolymers. The formulation includes a rice biopolymer-based composite material with chitosan and sodium alginate and, followed by cross-linking with a natural base (pH∼ 12). The developed glue formulation is effective in joining the litho paper, cotton, and guar gum-chitosan cross-linked biopolymer film (GG-CH-C). The lap shear strength of the prepared glue formulation is maximum for the substrate sodium alginate-chitosan cross-linked biopolymer film. In the presence of high humidity (100 % RH), the lap shear strength of the prepared glue formulation decreases; however, it was still measurable and found to be (2.99 ± 0.34) MPa. A plausible mechanism is discussed to explain the chemical interactions between the prepared glue formulation and the biopolymer film substrates. The cytotoxicity of the prepared glue is tested against CC1 hepatocytes. Hence, rice-biopolymer-based composite is an excellent glue material that is found to be effective in joining two biopolymeric surfaces.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100507"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biopolymers are potential materials that will eventually replace petroleum-based polymers in various applications, including packaging applications. One of the systems that will be pre-requisitely required is the sealing of biopolymer. Conventional sealing techniques, viz. heat sealing and chemical adhesive, are not suitable for sealing biopolymers. In this work, we have demonstrated the formulation of biopolymer-based glue, which is effective in sealing biopolymers. The formulation includes a rice biopolymer-based composite material with chitosan and sodium alginate and, followed by cross-linking with a natural base (pH∼ 12). The developed glue formulation is effective in joining the litho paper, cotton, and guar gum-chitosan cross-linked biopolymer film (GG-CH-C). The lap shear strength of the prepared glue formulation is maximum for the substrate sodium alginate-chitosan cross-linked biopolymer film. In the presence of high humidity (100 % RH), the lap shear strength of the prepared glue formulation decreases; however, it was still measurable and found to be (2.99 ± 0.34) MPa. A plausible mechanism is discussed to explain the chemical interactions between the prepared glue formulation and the biopolymer film substrates. The cytotoxicity of the prepared glue is tested against CC1 hepatocytes. Hence, rice-biopolymer-based composite is an excellent glue material that is found to be effective in joining two biopolymeric surfaces.