Simulations and performance analysis of CH3NH3SnI3 perovskite solar cell: Modeling thickness and temperature effects using SCAPS-1D

Samra Imran, Mamoona Khalid
{"title":"Simulations and performance analysis of CH3NH3SnI3 perovskite solar cell: Modeling thickness and temperature effects using SCAPS-1D","authors":"Samra Imran,&nbsp;Mamoona Khalid","doi":"10.1016/j.nxmate.2024.100439","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy has emerged as an effective renewable source of electricity that reduces carbon emissions and global warming. Conventional solar panels comprise silicon wafers and are vastly used on a commercial basis; however, they do have some drawbacks. Silicon is an indirect band gap material (E<sub>g</sub> = 1.12 eV), that lowers its overall absorption and affects the efficiency of the solar cells. Increasing the thickness of existing cells can result in better absorption, but this increases manufacturing cost and complexity. Recently, Perovskite materials have proven to be an effective alternative, as they have better light absorption capability, are readily crystallized as a thin film, and have low cost and higher efficiencies compared to the existing solar technology. Organic/inorganic halide perovskite solar cells are declared the game changer as an alternate energy solution in a concise period claiming efficiencies &gt;20 %. This remarkable progress further highlights the possibility of realizing the potential even deeper. In the Perovskite solar cell structure, Electron Transport Layer (ETL) and Hole transport layer (HTL) is also added to avoid recombination of charge, and maximize absorption. In this paper, we implemented a novel solar cell design on SCAPS-1D, having an optimized parameter composition of FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuI/Au. The simulation results demonstrated an open circuit voltage (V<sub>oc</sub>) =1.06 V, J<sub>sc</sub>= 32.15 mA/cm<sup>2</sup>, for FF= 80.43 % and PCE= 27.33 %. We also analyzed the effect of absorber layer thickness and temperature on the performance of the proposed design. The optimized design can not only be useful for the development of a cost-effective and efficient solar cell but also has the potential to advance the field of Perovskite solar cells. Furthermore, we present the mathematical modeling of the proposed solar cell on MATLAB Simulink by mapping the characteristics onto the solar array. Through this modeling, we have developed a solar panel design that can give an output power of 130 W.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100439"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982282400337X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy has emerged as an effective renewable source of electricity that reduces carbon emissions and global warming. Conventional solar panels comprise silicon wafers and are vastly used on a commercial basis; however, they do have some drawbacks. Silicon is an indirect band gap material (Eg = 1.12 eV), that lowers its overall absorption and affects the efficiency of the solar cells. Increasing the thickness of existing cells can result in better absorption, but this increases manufacturing cost and complexity. Recently, Perovskite materials have proven to be an effective alternative, as they have better light absorption capability, are readily crystallized as a thin film, and have low cost and higher efficiencies compared to the existing solar technology. Organic/inorganic halide perovskite solar cells are declared the game changer as an alternate energy solution in a concise period claiming efficiencies >20 %. This remarkable progress further highlights the possibility of realizing the potential even deeper. In the Perovskite solar cell structure, Electron Transport Layer (ETL) and Hole transport layer (HTL) is also added to avoid recombination of charge, and maximize absorption. In this paper, we implemented a novel solar cell design on SCAPS-1D, having an optimized parameter composition of FTO/TiO2/CH3NH3SnI3/CuI/Au. The simulation results demonstrated an open circuit voltage (Voc) =1.06 V, Jsc= 32.15 mA/cm2, for FF= 80.43 % and PCE= 27.33 %. We also analyzed the effect of absorber layer thickness and temperature on the performance of the proposed design. The optimized design can not only be useful for the development of a cost-effective and efficient solar cell but also has the potential to advance the field of Perovskite solar cells. Furthermore, we present the mathematical modeling of the proposed solar cell on MATLAB Simulink by mapping the characteristics onto the solar array. Through this modeling, we have developed a solar panel design that can give an output power of 130 W.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信