Efficient solution method for the Reynolds equation with Herschel–Bulkley fluids

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
G.H.G. van der Meer, R.A.J. van Ostayen
{"title":"Efficient solution method for the Reynolds equation with Herschel–Bulkley fluids","authors":"G.H.G. van der Meer,&nbsp;R.A.J. van Ostayen","doi":"10.1016/j.triboint.2024.110460","DOIUrl":null,"url":null,"abstract":"<div><div>Thin film lubrication problems frequently involve the use of lubricants with non-Newtonian characteristics, and a relatively simple viscosity model that can describe several non-Newtonian fluids is the Herschel–Bulkley relation. This relation can model solid-like properties of a lubricant at low shear stress using a yield stress, while at higher shear stress values shear-thinning or thickening can be included. In literature, this viscosity model has been combined with various governing equations to solve the non-Newtonian thin film problem, resulting in models that range from full 3D CFD simulations, to 1D Reynolds equation based methods. However, something that all of these approaches have in common is that they are either computationally expensive, can only be used for 1D geometries, or use non-exact, regularised versions of the Herschel–Bulkley model for reasons of numerical stability. This paper therefore introduces a method for solving a thin film problem with a non-regularised Herschel–Bulkley lubricant using the 2D generalised Reynolds equation, and this approach is shown to be fast without compromising on accuracy. The increased speed will allow the model to be used more efficiently in complex simulations or design optimisation scenarios.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"204 ","pages":"Article 110460"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X2401212X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thin film lubrication problems frequently involve the use of lubricants with non-Newtonian characteristics, and a relatively simple viscosity model that can describe several non-Newtonian fluids is the Herschel–Bulkley relation. This relation can model solid-like properties of a lubricant at low shear stress using a yield stress, while at higher shear stress values shear-thinning or thickening can be included. In literature, this viscosity model has been combined with various governing equations to solve the non-Newtonian thin film problem, resulting in models that range from full 3D CFD simulations, to 1D Reynolds equation based methods. However, something that all of these approaches have in common is that they are either computationally expensive, can only be used for 1D geometries, or use non-exact, regularised versions of the Herschel–Bulkley model for reasons of numerical stability. This paper therefore introduces a method for solving a thin film problem with a non-regularised Herschel–Bulkley lubricant using the 2D generalised Reynolds equation, and this approach is shown to be fast without compromising on accuracy. The increased speed will allow the model to be used more efficiently in complex simulations or design optimisation scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信