Enhanced optical performance of a dual-drain vertical TFET photosensor for near-infrared light detection

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Chinna Baji Shaik, Chandan Kumar Pandey
{"title":"Enhanced optical performance of a dual-drain vertical TFET photosensor for near-infrared light detection","authors":"Chinna Baji Shaik,&nbsp;Chandan Kumar Pandey","doi":"10.1016/j.micrna.2024.208051","DOIUrl":null,"url":null,"abstract":"<div><div>This paper details the optical performance of a dual-drain vertical TFET (DDV-TFET) based photosensor designed for light detection in the near-infrared (NIR) region (0.7–1.0 μm), employing silicon with N<sup>+</sup> doping as the photosensing gate. The optical performance of DDV-TFET photosensor is assessed by observing the variations in energy band diagram, optical voltage and band-to-band tunnelling rate of the charge carriers under both Light and dark conditions. The incorporation of N<sup>+</sup> pockets and back gate facilitates an increased tunneling rate of charge carriers at the source-channel interface, thereby enhancing the modulation of the channel behavior when light is absorbed inside the photosensing gate. The presented DDV-TFET photosensor demonstrates enhanced optical performance when detecting light at low illumination intensity of 0.5 W/cm<sup>2</sup> incident on the photosensing gate. TCAD-based simulation results reveal that silicon photosensing gate with an optimal thickness of 20 nm and a pocket doping concentration of 1 × 10<sup>19</sup> cm<sup>−3</sup> achieves a sensitivity of 3.59 × 10<sup>5</sup>, a responsivity of 14.8 A/W, a detectivity of 5 × 10<sup>11</sup> Jones and a signal-to-noise ratio (SNR) of 111 dB when detecting incident light in the NIR range. Furthermore, the optical performance of DDV-TFET based photosensor is observed for different <span><math><mrow><mi>k</mi></mrow></math></span>-value of gate oxide and germanium as source material, which reveals that low-<em>k</em> gate oxide offers higher sensitivity and SNR. Conversely, utilizing low band gap source material causes degradation in the sensitivity and SNR of the investigated photosensor.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208051"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324003017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details the optical performance of a dual-drain vertical TFET (DDV-TFET) based photosensor designed for light detection in the near-infrared (NIR) region (0.7–1.0 μm), employing silicon with N+ doping as the photosensing gate. The optical performance of DDV-TFET photosensor is assessed by observing the variations in energy band diagram, optical voltage and band-to-band tunnelling rate of the charge carriers under both Light and dark conditions. The incorporation of N+ pockets and back gate facilitates an increased tunneling rate of charge carriers at the source-channel interface, thereby enhancing the modulation of the channel behavior when light is absorbed inside the photosensing gate. The presented DDV-TFET photosensor demonstrates enhanced optical performance when detecting light at low illumination intensity of 0.5 W/cm2 incident on the photosensing gate. TCAD-based simulation results reveal that silicon photosensing gate with an optimal thickness of 20 nm and a pocket doping concentration of 1 × 1019 cm−3 achieves a sensitivity of 3.59 × 105, a responsivity of 14.8 A/W, a detectivity of 5 × 1011 Jones and a signal-to-noise ratio (SNR) of 111 dB when detecting incident light in the NIR range. Furthermore, the optical performance of DDV-TFET based photosensor is observed for different k-value of gate oxide and germanium as source material, which reveals that low-k gate oxide offers higher sensitivity and SNR. Conversely, utilizing low band gap source material causes degradation in the sensitivity and SNR of the investigated photosensor.
一种用于近红外光探测的双漏垂直TFET光敏器的光学性能增强
本文详细介绍了一种用于近红外(NIR)区域(0.7 ~ 1.0 μm)光探测的双漏型垂直TFET (DDV-TFET)光传感器的光学性能,该传感器采用掺杂N+的硅作为光敏栅极。通过观察在光照和黑暗条件下载流子的能带图、光电压和带间隧穿速率的变化来评价DDV-TFET光传感器的光学性能。N+口袋和后门的结合促进了源-通道界面电荷载流子隧穿速率的增加,从而增强了光在光敏栅内吸收时通道行为的调制。所制备的DDV-TFET光敏器件在检测入射光强度为0.5 W/cm2的低照度光时,具有较好的光学性能。基于tcad的仿真结果表明,当硅光敏栅极的最佳厚度为20 nm,掺杂浓度为1 × 1019 cm−3时,对近红外入射光的探测灵敏度为3.59 × 105,响应率为14.8 a /W,探测率为5 × 1011 Jones,信噪比为111 dB。此外,在不同k值的栅极氧化物和锗作为源材料时,对基于DDV-TFET的光电传感器的光学性能进行了观察,发现低k值的栅极氧化物具有更高的灵敏度和信噪比。相反,使用低带隙源材料会导致所研究光敏器的灵敏度和信噪比下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信