Enhanced optical performance of a dual-drain vertical TFET photosensor for near-infrared light detection

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Chinna Baji Shaik, Chandan Kumar Pandey
{"title":"Enhanced optical performance of a dual-drain vertical TFET photosensor for near-infrared light detection","authors":"Chinna Baji Shaik,&nbsp;Chandan Kumar Pandey","doi":"10.1016/j.micrna.2024.208051","DOIUrl":null,"url":null,"abstract":"<div><div>This paper details the optical performance of a dual-drain vertical TFET (DDV-TFET) based photosensor designed for light detection in the near-infrared (NIR) region (0.7–1.0 μm), employing silicon with N<sup>+</sup> doping as the photosensing gate. The optical performance of DDV-TFET photosensor is assessed by observing the variations in energy band diagram, optical voltage and band-to-band tunnelling rate of the charge carriers under both Light and dark conditions. The incorporation of N<sup>+</sup> pockets and back gate facilitates an increased tunneling rate of charge carriers at the source-channel interface, thereby enhancing the modulation of the channel behavior when light is absorbed inside the photosensing gate. The presented DDV-TFET photosensor demonstrates enhanced optical performance when detecting light at low illumination intensity of 0.5 W/cm<sup>2</sup> incident on the photosensing gate. TCAD-based simulation results reveal that silicon photosensing gate with an optimal thickness of 20 nm and a pocket doping concentration of 1 × 10<sup>19</sup> cm<sup>−3</sup> achieves a sensitivity of 3.59 × 10<sup>5</sup>, a responsivity of 14.8 A/W, a detectivity of 5 × 10<sup>11</sup> Jones and a signal-to-noise ratio (SNR) of 111 dB when detecting incident light in the NIR range. Furthermore, the optical performance of DDV-TFET based photosensor is observed for different <span><math><mrow><mi>k</mi></mrow></math></span>-value of gate oxide and germanium as source material, which reveals that low-<em>k</em> gate oxide offers higher sensitivity and SNR. Conversely, utilizing low band gap source material causes degradation in the sensitivity and SNR of the investigated photosensor.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208051"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324003017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details the optical performance of a dual-drain vertical TFET (DDV-TFET) based photosensor designed for light detection in the near-infrared (NIR) region (0.7–1.0 μm), employing silicon with N+ doping as the photosensing gate. The optical performance of DDV-TFET photosensor is assessed by observing the variations in energy band diagram, optical voltage and band-to-band tunnelling rate of the charge carriers under both Light and dark conditions. The incorporation of N+ pockets and back gate facilitates an increased tunneling rate of charge carriers at the source-channel interface, thereby enhancing the modulation of the channel behavior when light is absorbed inside the photosensing gate. The presented DDV-TFET photosensor demonstrates enhanced optical performance when detecting light at low illumination intensity of 0.5 W/cm2 incident on the photosensing gate. TCAD-based simulation results reveal that silicon photosensing gate with an optimal thickness of 20 nm and a pocket doping concentration of 1 × 1019 cm−3 achieves a sensitivity of 3.59 × 105, a responsivity of 14.8 A/W, a detectivity of 5 × 1011 Jones and a signal-to-noise ratio (SNR) of 111 dB when detecting incident light in the NIR range. Furthermore, the optical performance of DDV-TFET based photosensor is observed for different k-value of gate oxide and germanium as source material, which reveals that low-k gate oxide offers higher sensitivity and SNR. Conversely, utilizing low band gap source material causes degradation in the sensitivity and SNR of the investigated photosensor.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信