Performance investigation of neoteric Pt/Pd Junctionless gas tube FET(JL-GT-FET) as a Hydrogen(H2) gas sensor for industrial applications-analytical model

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Anubha Goel , Sonam Rewari , R.S. Gupta
{"title":"Performance investigation of neoteric Pt/Pd Junctionless gas tube FET(JL-GT-FET) as a Hydrogen(H2) gas sensor for industrial applications-analytical model","authors":"Anubha Goel ,&nbsp;Sonam Rewari ,&nbsp;R.S. Gupta","doi":"10.1016/j.micrna.2024.208050","DOIUrl":null,"url":null,"abstract":"<div><div>In this manuscript, an analytical model has been proposed for Junctionless (JL) Nanotube Field Effect Transistor (FET) as a hydrogen sensor, being called as a Junctionless Gas Tube FET (JL-GT-FET). Palladium (Pd) and platinum (Pt) has been exploited as the catalytic metal gate and are compared for their performance metrics. The proposed sensor, works on the principle that the pressure on the catalytic metal gate will be altered by the change in the concentration of gas molecules which in turn modulates the work-function of the metal gate. Thus, it can rightly be inferred that the change in the work-function of the metal is being used to detect the presence of hydrogen gas molecules. The performance parameters being analyzed are threshold voltage, electric field, surface potential, drain current, Transconductance, output conductance and sensitivity. Here, in this manuscript, an analytical model has also been developed for Junctionless Gas Tube FET (JL-GT-FET) as a hydrogen sensor. The Junctionless Gas FET based sensor has been compared with Nanowire FET under similar pressure and catalytic conditions. It has been established that the Junctionless Gas Tube FET exhibits much higher efficiency in sensing the pressure variations. Also, it has been established that the modeling so obtained by solving the 2-D Poisson equation with appropriate boundary conditions for the Junctionless Gas Tube FET are much in coherence with the results so obtained by simulating the device structure on the Atlas 3-D device simulator.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208050"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324003005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, an analytical model has been proposed for Junctionless (JL) Nanotube Field Effect Transistor (FET) as a hydrogen sensor, being called as a Junctionless Gas Tube FET (JL-GT-FET). Palladium (Pd) and platinum (Pt) has been exploited as the catalytic metal gate and are compared for their performance metrics. The proposed sensor, works on the principle that the pressure on the catalytic metal gate will be altered by the change in the concentration of gas molecules which in turn modulates the work-function of the metal gate. Thus, it can rightly be inferred that the change in the work-function of the metal is being used to detect the presence of hydrogen gas molecules. The performance parameters being analyzed are threshold voltage, electric field, surface potential, drain current, Transconductance, output conductance and sensitivity. Here, in this manuscript, an analytical model has also been developed for Junctionless Gas Tube FET (JL-GT-FET) as a hydrogen sensor. The Junctionless Gas FET based sensor has been compared with Nanowire FET under similar pressure and catalytic conditions. It has been established that the Junctionless Gas Tube FET exhibits much higher efficiency in sensing the pressure variations. Also, it has been established that the modeling so obtained by solving the 2-D Poisson equation with appropriate boundary conditions for the Junctionless Gas Tube FET are much in coherence with the results so obtained by simulating the device structure on the Atlas 3-D device simulator.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信