{"title":"Solving order 3 difference equations","authors":"Heba Bou KaedBey, Mark van Hoeij, Man Cheung Tsui","doi":"10.1016/j.jsc.2025.102419","DOIUrl":null,"url":null,"abstract":"<div><div>We classify order 3 linear difference operators over <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> that are solvable in terms of lower order difference operators. To prove this result, we introduce the notion of absolute irreducibility for difference modules, and classify modules of arbitrary dimension that are irreducible but not absolutely irreducible.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"129 ","pages":"Article 102419"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712500001X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We classify order 3 linear difference operators over that are solvable in terms of lower order difference operators. To prove this result, we introduce the notion of absolute irreducibility for difference modules, and classify modules of arbitrary dimension that are irreducible but not absolutely irreducible.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.