Cyrille Chenavier, Thomas Cluzeau, Adya Musson-Leymarie
{"title":"Topological closure of formal powers series ideals and application to topological rewriting theory","authors":"Cyrille Chenavier, Thomas Cluzeau, Adya Musson-Leymarie","doi":"10.1016/j.jsc.2024.102416","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate formal power series ideals and their relationship to topological rewriting theory. Since commutative formal power series algebras are Zariski rings, their ideals are closed for the adic topology defined by the maximal ideal generated by the indeterminates. We provide a constructive proof of this result which, given a formal power series in the topological closure of an ideal, consists in computing a cofactor representation of the series with respect to a standard basis of the ideal. We apply this result in the context of topological rewriting theory, where two natural notions of confluence arise: topological confluence and infinitary confluence. We give explicit examples illustrating that in general, infinitary confluence is a strictly stronger notion than topological confluence. Using topological closure of ideals, we finally show that in the context of rewriting theory on commutative formal power series, infinitary and topological confluences are equivalent when the monomial order considered is compatible with the degree.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"129 ","pages":"Article 102416"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124001202","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate formal power series ideals and their relationship to topological rewriting theory. Since commutative formal power series algebras are Zariski rings, their ideals are closed for the adic topology defined by the maximal ideal generated by the indeterminates. We provide a constructive proof of this result which, given a formal power series in the topological closure of an ideal, consists in computing a cofactor representation of the series with respect to a standard basis of the ideal. We apply this result in the context of topological rewriting theory, where two natural notions of confluence arise: topological confluence and infinitary confluence. We give explicit examples illustrating that in general, infinitary confluence is a strictly stronger notion than topological confluence. Using topological closure of ideals, we finally show that in the context of rewriting theory on commutative formal power series, infinitary and topological confluences are equivalent when the monomial order considered is compatible with the degree.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.