Development of vitex-derived polymer nanofibers using electrochemical sensors for the treatment of polycystic ovarian syndrome in rats as an animal model
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Development of vitex-derived polymer nanofibers using electrochemical sensors for the treatment of polycystic ovarian syndrome in rats as an animal model","authors":"Zaid H. Mahmoud , Uday Abdul-Reda Hussein , Najwa Aljbory , Mohammed Jawad Alnajar , Laleh Maleknia , Abolfazl Mirani , Ehsan kianfar","doi":"10.1016/j.biosx.2024.100570","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives</h3><div>Nanofibers have a high specific surface area and small pores, which increases the possibility of drug uptake. In this study, chasteberry-containing nanofibers were prepared by electrospinning to investigate their potential for polycystic follicles after induction of polycystic ovarian syndrome (PCOS).</div></div><div><h3>Materials and methods</h3><div>Chasteberry-containing nanofibers were identified using Fourier-transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and thermal gravimetric analysis (TGA) tests, as well as drug release and antibacterial tests. In this study, 42 Sprague-Dawley rats with regular menstrual cycles were divided into five groups: control group (healthy rats), polycarbonate (PC) group (treated with 1 mg/kg letrozole for 28 days to induce PCOS syndrome), and Poly terephthalate (PT) group (treated with PCOS for 30 days). Chasteberry was included at 1, 2, 4 wt%. To induce PCOS, the polyterephthalate (PT) and polycarbonate (PC) groups were administered 1 mg/kg letrozole by oral gavage for 28 days. The polyterephthalate (PT) group was treated with different doses of chasteberry-containing nanofibers (1, 2, 4 wt%).</div></div><div><h3>Results</h3><div>The results showed that the drug was well incorporated into the fibers and released slowly and sustainedly from the nanofibers for 30 days. Ex vivo results showed that by taking letrozole, the polycarbonate (PC) group had larger cystic follicles with a very thin granulosa layer than the control group. This is the cause of ovarian anovulation or oligo-ovulation and induction of polycystic ovarian syndrome. In the polyterephthalate (PT) group, which was administered nanofibers containing chasteberry nanomedicine subcutaneously, the number of cystic follicles decreased and the number of various follicles indicating ovulation increased in these groups.</div></div><div><h3>Conclusion</h3><div>Subcutaneous administration of Vitex nanofibers at a dose of 4 wt% can improve polycystic ovarian syndrome by decreasing cystic follicles and increasing the number of various follicles and corpora lutea.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"22 ","pages":"Article 100570"},"PeriodicalIF":10.6100,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024001341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives
Nanofibers have a high specific surface area and small pores, which increases the possibility of drug uptake. In this study, chasteberry-containing nanofibers were prepared by electrospinning to investigate their potential for polycystic follicles after induction of polycystic ovarian syndrome (PCOS).
Materials and methods
Chasteberry-containing nanofibers were identified using Fourier-transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and thermal gravimetric analysis (TGA) tests, as well as drug release and antibacterial tests. In this study, 42 Sprague-Dawley rats with regular menstrual cycles were divided into five groups: control group (healthy rats), polycarbonate (PC) group (treated with 1 mg/kg letrozole for 28 days to induce PCOS syndrome), and Poly terephthalate (PT) group (treated with PCOS for 30 days). Chasteberry was included at 1, 2, 4 wt%. To induce PCOS, the polyterephthalate (PT) and polycarbonate (PC) groups were administered 1 mg/kg letrozole by oral gavage for 28 days. The polyterephthalate (PT) group was treated with different doses of chasteberry-containing nanofibers (1, 2, 4 wt%).
Results
The results showed that the drug was well incorporated into the fibers and released slowly and sustainedly from the nanofibers for 30 days. Ex vivo results showed that by taking letrozole, the polycarbonate (PC) group had larger cystic follicles with a very thin granulosa layer than the control group. This is the cause of ovarian anovulation or oligo-ovulation and induction of polycystic ovarian syndrome. In the polyterephthalate (PT) group, which was administered nanofibers containing chasteberry nanomedicine subcutaneously, the number of cystic follicles decreased and the number of various follicles indicating ovulation increased in these groups.
Conclusion
Subcutaneous administration of Vitex nanofibers at a dose of 4 wt% can improve polycystic ovarian syndrome by decreasing cystic follicles and increasing the number of various follicles and corpora lutea.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.