Spray drying granulation of potassium sodium niobate (KNN) for binder jetting: Feedstock preparation and influence on sintered material properties

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Marco Mariani , Francesco Bertolini , Elisa Mercadelli , Guillermo Frias Blanco , Carlo Baldisserri , Antonio Javier Sanchez-Herencia , Carmen Galassi , Begoña Ferrari , Nora Lecis
{"title":"Spray drying granulation of potassium sodium niobate (KNN) for binder jetting: Feedstock preparation and influence on sintered material properties","authors":"Marco Mariani ,&nbsp;Francesco Bertolini ,&nbsp;Elisa Mercadelli ,&nbsp;Guillermo Frias Blanco ,&nbsp;Carlo Baldisserri ,&nbsp;Antonio Javier Sanchez-Herencia ,&nbsp;Carmen Galassi ,&nbsp;Begoña Ferrari ,&nbsp;Nora Lecis","doi":"10.1016/j.oceram.2025.100743","DOIUrl":null,"url":null,"abstract":"<div><div>Binder jetting of potassium sodium niobate (K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>) offers potential for generating shape-dependent responses with high industrial output. However, the printing stage relies heavily on the properties of the dry feedstock, making its performance optimization crucial. In this regard, morphological functionalization through granulation can be a useful methodology.</div><div>This study characterizes two powders in dry and wet states to develop colloidal suspensions for spray drying granulation. Particle size, shape, and ζ-potential are measured to stabilize them in an aqueous slurry. Granule morphology and flowability are assessed and compared with the original feedstock. Disk-shaped specimens are then printed and sintered.</div><div>Spray drying granulation successfully produces spherical and fine feedstocks compatible with the typical layer thickness (50 μm) of binder jetting. Densified parts displayed significant residual porosity (20–40 %) along the building direction, affecting piezoelectric performance: strain coefficients were reduced, but increased voltage coefficients yielded high figures-of-merit.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"21 ","pages":"Article 100743"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Binder jetting of potassium sodium niobate (K0.5Na0.5NbO3) offers potential for generating shape-dependent responses with high industrial output. However, the printing stage relies heavily on the properties of the dry feedstock, making its performance optimization crucial. In this regard, morphological functionalization through granulation can be a useful methodology.
This study characterizes two powders in dry and wet states to develop colloidal suspensions for spray drying granulation. Particle size, shape, and ζ-potential are measured to stabilize them in an aqueous slurry. Granule morphology and flowability are assessed and compared with the original feedstock. Disk-shaped specimens are then printed and sintered.
Spray drying granulation successfully produces spherical and fine feedstocks compatible with the typical layer thickness (50 μm) of binder jetting. Densified parts displayed significant residual porosity (20–40 %) along the building direction, affecting piezoelectric performance: strain coefficients were reduced, but increased voltage coefficients yielded high figures-of-merit.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信