{"title":"Exploring physiological constraints on life-history traits using Dynamic Energy Budgets","authors":"Mélanie Debelgarric, Charlotte Récapet","doi":"10.1016/j.ecolmodel.2024.110993","DOIUrl":null,"url":null,"abstract":"<div><div>A current challenge in predicting species responses to global change is to understand evolutionary responses to rapidly changing environments and novel environmental conditions. It has been hypothesised that the speed of evolution would be contingent uponhighly dependent on evolutionary constraints shaped by resource allocation trade-offs and other physiological mechanisms underlying the expression of traits. However, the majority of models employed to investigate life-history evolution remain phenomenological in nature. They fail to incorporate realistic mechanisms for the transfer and transformation of resources that are in accordance with the established laws of physics and chemistry. Our objective was therefore to explore the full range of life-history strategies that are genuinely available to organisms through realistic metabolic processes and to compare them with the predictions made by classical life-history theories. To this end, we employed the Dynamic Energy Budget (DEB) theory to model the energy allocation of individuals. We studied inter-individual variation by varying the value of energetic primary parameters (i.e. physiological processes) of the model, under constant environmental conditions (optimal temperature and ad libitum food source). Physiological processes that impact both growth and reproduction, such as energy acquisition, allocation and mobilisation, were found to reproduce the predictions of life-history theory to a certain extent. However, some discrepancies remained, mainly because DEB theory accounts for physiological retro-actions that are not articulated in life-history theories. For example, quicker growth had an indirect impact on reproduction and ageing through respectively increased resource acquisition and dilution of damage-inducing compounds. Based on those insights, we propose future directions to integrate physiology, and in particular metabolism, into models of life-history evolution.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"501 ","pages":"Article 110993"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024003818","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A current challenge in predicting species responses to global change is to understand evolutionary responses to rapidly changing environments and novel environmental conditions. It has been hypothesised that the speed of evolution would be contingent uponhighly dependent on evolutionary constraints shaped by resource allocation trade-offs and other physiological mechanisms underlying the expression of traits. However, the majority of models employed to investigate life-history evolution remain phenomenological in nature. They fail to incorporate realistic mechanisms for the transfer and transformation of resources that are in accordance with the established laws of physics and chemistry. Our objective was therefore to explore the full range of life-history strategies that are genuinely available to organisms through realistic metabolic processes and to compare them with the predictions made by classical life-history theories. To this end, we employed the Dynamic Energy Budget (DEB) theory to model the energy allocation of individuals. We studied inter-individual variation by varying the value of energetic primary parameters (i.e. physiological processes) of the model, under constant environmental conditions (optimal temperature and ad libitum food source). Physiological processes that impact both growth and reproduction, such as energy acquisition, allocation and mobilisation, were found to reproduce the predictions of life-history theory to a certain extent. However, some discrepancies remained, mainly because DEB theory accounts for physiological retro-actions that are not articulated in life-history theories. For example, quicker growth had an indirect impact on reproduction and ageing through respectively increased resource acquisition and dilution of damage-inducing compounds. Based on those insights, we propose future directions to integrate physiology, and in particular metabolism, into models of life-history evolution.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).