Heat load efficiency in multi-temperature cryogenic computing systems

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Nurzhan Zhuldassov, Rassul Bairamkulov, Eby G. Friedman
{"title":"Heat load efficiency in multi-temperature cryogenic computing systems","authors":"Nurzhan Zhuldassov,&nbsp;Rassul Bairamkulov,&nbsp;Eby G. Friedman","doi":"10.1016/j.cryogenics.2024.104013","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous cryogenic computing systems often incorporate a variety of technologies, each functioning at different temperatures. The chosen operating temperature of these components significantly influences the overall power dissipation, heat load, and system performance. Existing design methodologies for managing cryogenic systems with multiple temperature zones often overlook thermal variations within these zones, the interconnect between different zones, and are restricted to the temperature within a single zone. A comprehensive framework designed to enhance the efficiency of heterogeneous computing systems operating under cryogenic conditions is presented in this paper. Utilizing a graph theoretic approach, the framework is used to evaluate the influence of operating temperatures on both delay and power consumption. Thermal interactions among different system components are also considered, enabling a more precise estimate of the power requirements and local thermal load. The methodology is applied to two case studies related to cryogenic cloud computing systems. The objective is to minimize overall system-wide power consumption while satisfying specific performance criteria and considering the impact of heat load on the cooling infrastructure.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"146 ","pages":"Article 104013"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524002339","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous cryogenic computing systems often incorporate a variety of technologies, each functioning at different temperatures. The chosen operating temperature of these components significantly influences the overall power dissipation, heat load, and system performance. Existing design methodologies for managing cryogenic systems with multiple temperature zones often overlook thermal variations within these zones, the interconnect between different zones, and are restricted to the temperature within a single zone. A comprehensive framework designed to enhance the efficiency of heterogeneous computing systems operating under cryogenic conditions is presented in this paper. Utilizing a graph theoretic approach, the framework is used to evaluate the influence of operating temperatures on both delay and power consumption. Thermal interactions among different system components are also considered, enabling a more precise estimate of the power requirements and local thermal load. The methodology is applied to two case studies related to cryogenic cloud computing systems. The objective is to minimize overall system-wide power consumption while satisfying specific performance criteria and considering the impact of heat load on the cooling infrastructure.
多温度低温计算系统的热负荷效率
异构低温计算系统通常包含多种技术,每种技术在不同的温度下工作。这些器件的工作温度对整体功耗、热负荷和系统性能影响很大。现有的设计方法用于管理具有多个温度区域的低温系统,通常忽略了这些区域内的热变化,不同区域之间的相互联系,并且仅限于单个区域内的温度。本文提出了一个综合框架,旨在提高在低温条件下运行的异构计算系统的效率。利用图论方法,该框架用于评估工作温度对延迟和功耗的影响。还考虑了不同系统组件之间的热相互作用,从而可以更精确地估计功率需求和局部热负荷。该方法应用于与低温云计算系统相关的两个案例研究。目标是在满足特定性能标准的同时,最大限度地减少整个系统的功耗,并考虑热负荷对冷却基础设施的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信