Growth behavior of bubbles containing non-condensable gas in superheated cryogenic liquids

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Yonghua Huang, Xujin Qin
{"title":"Growth behavior of bubbles containing non-condensable gas in superheated cryogenic liquids","authors":"Yonghua Huang,&nbsp;Xujin Qin","doi":"10.1016/j.cryogenics.2024.104016","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble growth is one of the most critical concerns in flashing or cavitation in metastable superheated liquids. The bubble growth rate and heat and mass transfer rates across the boundary are essential for quantifying the flashing evaporation behavior. Prior simulations treated the bubble as a pure vapor, which dropped an important influencing factor driving bubble growth. A mathematical model is proposed for characterizing bubble growth in superheated cryogenic liquids, namely, liquid oxygen, hydrogen, and nitrogen. The model considers a non-condensable gas component in the bubble, which plays a significant role in the early stages of bubble growth. It not only influences the critical radius of the bubble but also affects the delay time of the growth. The behavior of bubbles in these cryogenic fluids was compared to that in water in terms of radius growth. The effect of the liquid state on the bubble radius was investigated. As expected, the bubble grew faster in the liquid at lower pressures and greater degrees of superheat. Bubbles with smaller critical radii require higher degrees of superheat or thermal disturbances to grow.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"146 ","pages":"Article 104016"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524002364","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bubble growth is one of the most critical concerns in flashing or cavitation in metastable superheated liquids. The bubble growth rate and heat and mass transfer rates across the boundary are essential for quantifying the flashing evaporation behavior. Prior simulations treated the bubble as a pure vapor, which dropped an important influencing factor driving bubble growth. A mathematical model is proposed for characterizing bubble growth in superheated cryogenic liquids, namely, liquid oxygen, hydrogen, and nitrogen. The model considers a non-condensable gas component in the bubble, which plays a significant role in the early stages of bubble growth. It not only influences the critical radius of the bubble but also affects the delay time of the growth. The behavior of bubbles in these cryogenic fluids was compared to that in water in terms of radius growth. The effect of the liquid state on the bubble radius was investigated. As expected, the bubble grew faster in the liquid at lower pressures and greater degrees of superheat. Bubbles with smaller critical radii require higher degrees of superheat or thermal disturbances to grow.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信