Yunshu Zhou , Li Li , Mingzhen Yang , Yifeng Qiu , Li Ren , Ying Xu , Jing Shi
{"title":"Study on the eddy current losses and thermal characteristic of a conduction-cooled HTS energy storage magnet","authors":"Yunshu Zhou , Li Li , Mingzhen Yang , Yifeng Qiu , Li Ren , Ying Xu , Jing Shi","doi":"10.1016/j.cryogenics.2025.104027","DOIUrl":null,"url":null,"abstract":"<div><div>During the dynamic response of conduction-cooled high temperature superconductor (HTS) energy storage magnet, the AC loss of the magnet and the eddy current losses of the cold-conducting plates are generated. These two losses seriously threaten the thermal stability of the magnet, especially eddy current losses when the cold-conducting plates are not slit. Therefore, it is important to find a simple and effective way to model and reduce eddy current losses of cold-conducting plates for the sake of thermal stability. In this paper, both an effective 3D model to evaluate eddy current losses of cold-conducting plates and an efficient reduction scheme are proposed. The results prove that the eddy current loss of single cold-conducting plate is reduced by 99.9%, but the existence of longitudinal slit greatly affects its heat transfer efficiency. The epoxy impregnation method is further proposed to alleviate this influence availably, and the validity of homogenization method in the thermal analysis of magnets is verified.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"146 ","pages":"Article 104027"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525000050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
During the dynamic response of conduction-cooled high temperature superconductor (HTS) energy storage magnet, the AC loss of the magnet and the eddy current losses of the cold-conducting plates are generated. These two losses seriously threaten the thermal stability of the magnet, especially eddy current losses when the cold-conducting plates are not slit. Therefore, it is important to find a simple and effective way to model and reduce eddy current losses of cold-conducting plates for the sake of thermal stability. In this paper, both an effective 3D model to evaluate eddy current losses of cold-conducting plates and an efficient reduction scheme are proposed. The results prove that the eddy current loss of single cold-conducting plate is reduced by 99.9%, but the existence of longitudinal slit greatly affects its heat transfer efficiency. The epoxy impregnation method is further proposed to alleviate this influence availably, and the validity of homogenization method in the thermal analysis of magnets is verified.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics