Revolutionary barium titanate-BlueP/TMDCs SPR sensor: Ultra-sensitive detection of urine glucose levels

IF 4.1 Q1 CHEMISTRY, ANALYTICAL
Momen Sahriar Shoshi , Md Abu Huraiya , Vinoth Raj R , Abror Jawad , Chang Yi Kong , Hitoshi Tabata , Sankar Ganesh Ramaraj , S.M. Abdur Razzak
{"title":"Revolutionary barium titanate-BlueP/TMDCs SPR sensor: Ultra-sensitive detection of urine glucose levels","authors":"Momen Sahriar Shoshi ,&nbsp;Md Abu Huraiya ,&nbsp;Vinoth Raj R ,&nbsp;Abror Jawad ,&nbsp;Chang Yi Kong ,&nbsp;Hitoshi Tabata ,&nbsp;Sankar Ganesh Ramaraj ,&nbsp;S.M. Abdur Razzak","doi":"10.1016/j.talo.2025.100401","DOIUrl":null,"url":null,"abstract":"<div><div>This study represents a new design for an empathetic surface plasmon resonance (SPR) sensor that utilizes BlueP/TMDCs and BaTiO<sub>3</sub> (barium titanate) and employs the angular interrogation technique to measure the glucose concentration level in urine samples. This design optimization involved extensive numerical analysis through the use of the Transfer Matrix Method (TMM) at a visible wavelength of λ=633 nm to enhance sensitivity, full width half maximum (FWHM), detection accuracy (DA), and quality factor (QF). Additionally, Finite Element Method (FEM) analysis was used to ensure the accuracy of the findings achieved through Transfer Matrix Method (TMM). The suggested biosensor configuration involves five layers: a BK-7 glass prism, 56 nm Ag layer, 11 nm BaTiO<sub>3</sub> layer, BlueP/TMDCs with thickness of 0.68 nm, and a sensing medium (urine sample). Unlike earlier designs relying on conventional 2D materials or single dielectric layers, the proposed hybrid structure not only enhances light-matter interaction and optimizes electromagnetic field distribution but also outperforms other hybrid sensors by achieving superior sensitivity, detection accuracy, and quality factor. Through the use of novel combination of BlueP/TMDCs and BaTiO₃ in this hybrid sensor, the biosensor achieved significantly improved performance, with enhanced sensitivity of 435 deg/RIU at a concentration of glucose 10 g/dL, QF of 86.29442 RIU<sup>−1</sup> as well as DA of 0.190114 deg<sup>−1</sup> spanning a refractive index (RI) from 1.335 to 1.347.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100401"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831925000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study represents a new design for an empathetic surface plasmon resonance (SPR) sensor that utilizes BlueP/TMDCs and BaTiO3 (barium titanate) and employs the angular interrogation technique to measure the glucose concentration level in urine samples. This design optimization involved extensive numerical analysis through the use of the Transfer Matrix Method (TMM) at a visible wavelength of λ=633 nm to enhance sensitivity, full width half maximum (FWHM), detection accuracy (DA), and quality factor (QF). Additionally, Finite Element Method (FEM) analysis was used to ensure the accuracy of the findings achieved through Transfer Matrix Method (TMM). The suggested biosensor configuration involves five layers: a BK-7 glass prism, 56 nm Ag layer, 11 nm BaTiO3 layer, BlueP/TMDCs with thickness of 0.68 nm, and a sensing medium (urine sample). Unlike earlier designs relying on conventional 2D materials or single dielectric layers, the proposed hybrid structure not only enhances light-matter interaction and optimizes electromagnetic field distribution but also outperforms other hybrid sensors by achieving superior sensitivity, detection accuracy, and quality factor. Through the use of novel combination of BlueP/TMDCs and BaTiO₃ in this hybrid sensor, the biosensor achieved significantly improved performance, with enhanced sensitivity of 435 deg/RIU at a concentration of glucose 10 g/dL, QF of 86.29442 RIU−1 as well as DA of 0.190114 deg−1 spanning a refractive index (RI) from 1.335 to 1.347.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信