{"title":"Animal models of the human brain: Successes, limitations, and alternatives","authors":"Nancy Kanwisher","doi":"10.1016/j.conb.2024.102969","DOIUrl":null,"url":null,"abstract":"<div><div>The last three decades of research in human cognitive neuroscience have given us an initial “parts list” for the human mind in the form of a set of cortical regions with distinct and often very specific functions. But current neuroscientific methods in humans have limited ability to reveal exactly what these regions represent and compute, the causal role of each in behavior, and the interactions among regions that produce real-world cognition. Animal models can help to answer these questions when homologues exist in other species, like the face system in macaques. When homologues do not exist in animals, for example for speech and music perception, and understanding of language or other people's thoughts, intracranial recordings in humans play a central role, along with a new alternative to animal models: artificial neural networks.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"90 ","pages":"Article 102969"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824001314","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The last three decades of research in human cognitive neuroscience have given us an initial “parts list” for the human mind in the form of a set of cortical regions with distinct and often very specific functions. But current neuroscientific methods in humans have limited ability to reveal exactly what these regions represent and compute, the causal role of each in behavior, and the interactions among regions that produce real-world cognition. Animal models can help to answer these questions when homologues exist in other species, like the face system in macaques. When homologues do not exist in animals, for example for speech and music perception, and understanding of language or other people's thoughts, intracranial recordings in humans play a central role, along with a new alternative to animal models: artificial neural networks.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience